Restoration of the Tropical Dry Evergreen Forest of Peninsular India

Paul Blanchflower

Auroville Botanical Gardens Tamil Nadu, India 605 101 botanical@auroville.org.in

Abstract. The Tropical Dry Evergreen Forest (TDEF) of India is only found on the south eastern seaboard of the peninsular. It has a very limited range, and extends only 60 km inland. The TDEF occurs in an area of high population density and consequently it is the rarest type of forest ecosystem found in the subcontinent.

The establishment of the Auroville International Township in 1968 initiated a major work of eco-restoration which has turned a highly eroded lateritic plateau into a re-emerging ecosystem of the TDEF.

The work now spreads out beyond the boundaries of the international township and involves working with local people, especially women and children. Many lessons have been learnt and the work continues to reintegrate the forest in the social fabric of a rapidly changing rural environment.

INTRODUCTION

The vegetation of the coastal region of southeastern peninsular India has been defined as the Tropical Dry Evergreen Forest - TDEF (Champion and Seth 1968). It has a narrow range; some 500 km long (north to south) and at its broadest width is 50 km. Inland the makeup of the forest becomes more and more deciduous. This is probably due to the changing rainfall pattern and also the presence of dew in the coastal area for up to 2 months after the end of the winter monsoon. This area receives rain in both the summer and winter monsoons, in a tropical dissymmetric regime (Meher-Homji 1973), the annual rainfall being between 1000 – 1500mm, with the majority falling at the end of the year (Meher-Homji 1974).

In 1992 it was estimated that the proportion of the natural range of the TDEF remaining under forest cover was 5% (Meher-Homji 1992). By 2002 this estimate was adjusted to 4% (Wikramanayake et al. 2002). In both cases it was recognised that the vast majority of this remaining forest was highly disturbed. From the results of field studies carried out by the author over the past ten years a reasonable estimate would be that 5 % of this remaining forest cover is pristine, the remaining 95 % is degraded scrub. Consequently the TDEF of South India is considered to be a rare, if not the rarest, type of forest ecosystem left in the subcontinent today. This is due to circumstances which include limited range size, an extremely high human population level over an extended period of time, and until recently, a lack of interest in its survival as a coherent ecotype. Today it is not as neglected as it was up until the late seventies, and there is even a growing interest in it as an entity, spread

over a range of groups that include universities, NGO's and the Forest Department. The work that has been undertaken in the International Township of Auroville reflects this interest.

The TDEF is not a tall forest; the canopy rarely reaches higher than eight meters, with the occasional emergent tree reaching out above that height. The trees have to be able to withstand the cyclonic winds that once or twice in their lifetimes will roar in from the Bay of Bengal. The canopy is interlinked with lianas (woody vines) and the forest floor is a thick layer of leaf matter that is efficiently recycled by a dense mass of feeder roots in the top centimeter of the soil. It is a classical tropical forest with the nutrient wealth of the forest held in the canopy. This also means that once the forest is cut the impoverished soil is quickly leached of nutrients by the intense monsoonal rains.

In the past, the TDEF would have supported many of the smaller animals of Peninsular India, certainly Leopards (*Panthera tigris*), perhaps Tigers (*Panthera pardus*), and the Elephant (*Elephas maximus*) herds would have roamed within it on their way to seasonal grazing grounds in the wet months. Today it still supports animals such as the Porcupine (*Hystrix indica*), Mongoose (*Herpestes edwarsi*), Civet Cat (*Viverricula indica*) and possibly in some of the larger government reserve forest areas Pangolin (*Manis crassicaudata*) and Honey Badger (*Mellivora capensis*) still survive.

THE BEGINNINGS OF AUROVILLE

Once upon a time there was a dream, a dream of a place on the planet where people could live together in unity, a place of experimentation and development that would

Range of the TDEF

ABOUT THE AUTHOR: Paul Blanchflower has been involved in the restoration of the Tropical Drv Evergreen Forest since 1992. He is currently Co-Director of a European Commission funded project to develop a shared forest management plan for the ecotype, and he is Director of the newly established Auroville **Botanical Gardens** (www.auroville.org) Visit www.aurovilletdef.info for further information.

Range map for the TDEF (all photos in this article courtesy of the author, unless otherwise indicated). lead to humanity evolving and discovering the potential to transform the primitive and destructive in society.

This dream began to become reality in 1968 with the inauguration of the International Township of Auroville, 12 km north of the town of Pondicherry in the state of Tamil Nadu. In February of that year people gathered from all the nations of the world, under the umbrella of UNESCO and placed a sample of the soil from their country in an urn in the middle of a hot, dusty plateau that had been chosen as the center of the future city. It was quite an event, well attended by well-wishers from all over the planet and broadcast live on Indian National Radio. However when the crowds went home the hot dusty plateau remained, empty except for a few wandering goatherds, and during a few months of the year, some rain-fed subsistence agriculture in a rapidly degrading environment.

Top: Canyon erosion; **Bottom:** The first tree nursery, circa 1973. In the years that followed, the first settlers arrived. Often young, idealistic individuals who had been drawn to the project through the hope that the dream could be made into reality. They came to settle the land and in order to survive they needed to create a more comfortable

habitat for themselves. It quite quickly became obvious that trees were essential to provide shade from the intense sun that beat down upon the eroded surface. A process began that would continue until the present day, and over time evolve to encompass not simply the planting of trees, but the study of the ecosystem and people's relationship with it. It would become one of the finest examples of ecosystem restoration present on the planet at the present moment. Although not completely successful it would also expand to tackle some of the most important biodiversity conservation questions of the current day, such as how to make the forest relevant to today's society and how to develop the capacity of local communities to manage their own community resources in a way that is beneficial locally and to the planetary system as a whole.

REGENERATING A DEGRADED LANDSCAPE

A red pre-lateratic soil is hard as iron in the long dry season, and subject to dust storms in the height of summer as the hot winds came blowing in from the west. In the monsoon months of October and November, it transformed into a soft and highly erodable substrate that would wash out into the Bay of Bengal through canyons up to 20 meters deep and 100 meters wide (see figure 2). It was a world of extremes, temperatures of over 40 °c and humidity of 90% during the summer, transforming into rainstorms that delivered up to 50% of the average annual precipitation of 1200mm within ten days during the North East Monsoon. It was into this environment that the early settlers were thrust. So they planted trees, any trees that they could lay their hands upon. Initially plants were brought from outside nurseries, but soon they established their own, collecting the seeds from any source that they could find: roadsides, parks, residual forests. The pressures on these newly planted trees were immense, not only due to the hostile physical conditions, but also the habituated use of the plateau by the grazing herds led to a conflict of interests. The young trees needed protection. This was provided by the planting of live fences and the employment of local people as watchmen for the forests.

The trees grew, but not all of them equally well. Acacia auriculiformis vastly outperformed the others. It was an exotic from northwestern Queensland, a wattle that came to be known in Auroville as the "Work tree". It thrived on the lateratic soils, its nitrogen fixing ability compensating for the poor nutrient stores in the almost non-existent topsoil. The Work tree not only survived and grew fast, it also provided good firewood and, in later years, valuable and useful timber.

As the Auroville forests regenerated it was the birds that were the first to return and they continue to do so, in ever increasing numbers. As the diversity of flower and fruiting trees support an increasing variety of insects and other small prey animals, the bird list has reached over 100 species (see table of birds). Butterflies followed the birds with the establishment of specific food plants and current studies estimate over 200 species present. The mammal populations of generalist species such as Mongoose (*Herpestes edwarsi*), Pale Hedgehog (*Paraechinus coromandra*), Civet Cat (*Viverricula indica*), Indian Fox (*Vulpes bengalensis*) and the Jackal (*Canis aureus*) have also increased. Even some of the more specialized animals, such as the Porcupine (*Hystrix indica*), have found their way back to the forests in recent years. The reptile population has also increased with over 20 species of snakes recorded and other species such as the Monitor Lizard (*Varanus bengalensis*) increasing in numbers.

REFINING THE PROCESS: RESTORING THE TDEF

At the beginning of the 1980s, with over 1500 acres regenerated, the Auroville forests acquired a growing reputation. The greening of a desert was a story that many people were eager to hear. Various outreach programs were developed to try and take this technology out into the surrounding villages. Funds came both from within India and from without, to promote the planting of trees on farmer's lands, implementation of soil and water conservation measures, and also for the trial of various trees as possible species for reforestation programs. The Auroville community itself had grown to around 1500 people from over 35 different nations and of course not everybody was engaged in reforestation. Other areas needed attention such as schooling for the children, agriculture, investigation into alternative energy technologies, and even town planning. The enthusiasts however remained committed to the 'green work', as it had come to be known.

It had long been known that a remnant type of forest existed that was indigenous to the area. In fact in the early years many seed trips had been made to the local patches of remaining forest. Some of the species were already growing within the emerging forests. However a systematic and coordinated approach to studying this forest only really began at the beginning of the nineties, developed through funding assistance from an Indian organization called Foundation for the Revitalization of Local Health Traditions (FRLHT). They sponsored the establishment of in situ and ex situ medicinal plant reserves. Auroville was one of the first group of ex situ centers established by the FRLHT and this was the initiation of major research into the TDEF. Botanical surveys were carried out on a weekly basis in the local remnant forests. It was discovered that the government controlled Reserve Forests were examples of secondary growth vegetation, with the distribution of species skewed towards those that could re-grow or establish after disturbance. In the past they had been managed as woodlots and sold by auction to the highest bidder who would clear-cut them for fuel wood. The only true

primary forest to remain was in sacred groves found around temples of the God Iygenar. These shrines, situated outside of villages, were surrounded by forests, for as the mythology goes the god enjoyed hunting at night and these sacred areas were for his recreation. The size of these groves varied from less than a hectare to at most five hectares, and more often than not with some disturbance present in at least a part of the area.

Each discovery of a new grove provided more data about the make up of the original forest type. Surveys were made in each site, recording the relative abundance of each species. Up until the present day over 75 sites have been located and a total of 1130 species of angiosperms recorded. Each remnant forest is an isolated biome within a sea of populated and cultivated land. Consequently the rules of island biogeography apply: high chance of local extinction and dangers of genetic contraction, especially within the dioecious genera such as Diospyros. Each plant was carefully studied, its identification at the Auroville Herbarium was checked with the French Institute in Pondicherry and with the living authority of south indian botany, Father K.M Matthew at the Rapinat Herbarium in Trichy. Information was collected on phenological characteristics and seeds collected and transported back

Top: The tree nursery 20 years later (from figure 3), showing the same water tank; **Bottom:** Temple grove with statue.

BIRD SPECIES OF THE TDEF (Ref. #'s from Salim 1996)

Ref 747 80 111222337 224222222222222222222222222222222	Family ACCIPITRIDAE ACCIPITRIDAE ACCIPITRIDAE ACCIPITRIDAE ACCIPITRIDAE FALCONIDAE PHASIANIDAE PHASIANIDAE CHARADRIIDAE COLUMBIDAE COLUMBIDAE COLUMBIDAE COLUIDAE CUCULIDAE CORVIDAE APODIDAE APODIDAE APODIDAE ALCEDINIDAE MEROPIDAE CORACIIDAE PITTIDAE ALAUDIDAE HIRUNDINIDAE HIRUNDINIDAE HIRUNDINIDAE HIRUNDINIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE CORVIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE STURNIDAE CORVIDAE CORVIDAE CORVIDAE CORVIDAE CORVIDAE CORVIDAE CORVIDAE CORVIDAE CORVIDAE CORVIDAE CORVIDAE CORVIDAE CORVIDAE CORVIDAE STURNIDAE ST
--	---

SCIENTIFIC NAME Pernis ptilorhyncus Accipiter badius Virgatus besra Spilornis cheela Falco tinnunculus Francolinus pondicerianus Pavo cristatus Turnix suscitator Vanellus malabaricus Treron bicincta Streptopelia chinensis Psittacula krameri Clamator coromandus Clamator jacobinus Cuculus varius Cacomantis passerinus Eudynamys scolopacea Centropus sinensis Tvto alba Ótus bakkamoena Bubo bubo Athene brama Caprimulgus asiaticus Apus affinis Cypsiurus parvus Alcedo althis Halcyon smyrnensis Merops phillippinus Merops orientalis Coracias benghalensis Upupa epops Megalaima haemacephala Dinopium benghalensis Pitta brachyura Mirafra assamica Hirundo rustica Hirundo daurica Lanius cristatus Oriolus oriolus Dicrurus adsimilis Dicrurus leucophaeus Artamus fuscus Sturnus pagodarum Sturnus roseus Acridotheres tristis Dendrocitta vagabunda Corvus splendens Corvus macrorhynchos Tephrodornis pondicerianus Coracina melanoptera Pericrocotus cinnamomous Aegithina tiphia Pycnonotus cafer Pycnonotus luteolus Turdoides caudatus Turdoides malcolmi Turdoides affinis Muscicapa latirostris Muscicapa muttui Muscicapa rubeculoides Terpsiphone paradisi Orthotomus sutorius Erithacus brunneus Copsycus saularis Saxicoloides fulicata Zootera citrina citrina Zootera citrina cyanotus Motacilla indica Motacilla maderaspatensis Dicaeum erythrorhynchos Nectarinia zeylonica Nectarinia lotenia Nectarinia asiatica Zosterops palpebrosa Ploceus phillippinus Lonchura striata Lonchura malacca Carpodacus erythrinus

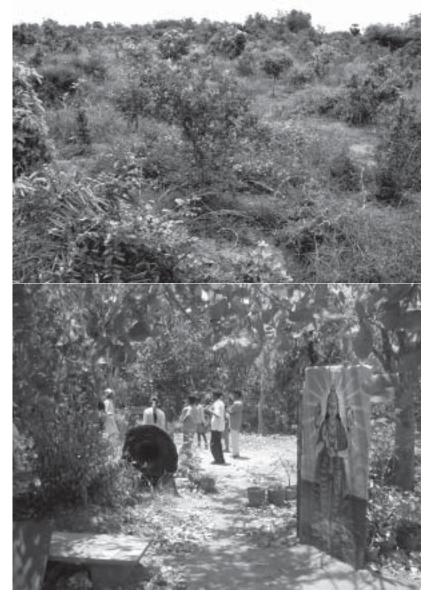
AUTHOR Temminck Gmelin Temminck Latham Linnaeus Gmelin Linnaeus Gmelin Boddaert Jerdon Scopoli Scopoli Linnaeus Boddaert Vahl Vahl Linnaeus Stephans Scopoli Pennant Linnaeus Temminck Latham J.E. Gray Lichtenstein Linnaeus Linnaeus Linnaeus Latham Linnaeus Linnaeus Muller Linnaeus Linnaeus Horsfield Linnaeus Linnaeus Linnaeus Linnaeus Bechstein Vieillot Vieillot Gmelin Linnaeus Linnaeus Latham Vieillot Wagler Gmelin Ruppell Linnaeus Linnaeus Linnaeus Lesson Dumont Sykes Jerdon Raffles Layard Vigors Linnaeus Pennant Hodqson Linnaeus Linnaeus Latham Jardine & Selby Gmelin Gmelin Latham Linnaeus Linnaeus Latham Temminck Linnaeus Linnaeus Linnaeus Pallas

COMMON NAME Honey Buzzard Shikra Besra Sparrow-Hawk Crested Serpent Eagle Kestrel Grey Partridge Common Peafowl Bustard Quail Yellow-Wattled Lapwing Orangebreasted Green Pigeon Spotted Dove Roseringed Parakeet Redwinged Crested Cuckoo Pied Crested Cuckoo Common Hawk-Cuckoo Plaintive Cuckoo Koel Coucal Barn Owl Collared Scops Owl Indian Great Horned Owl Spotted Owlet Nightjar House Swift Palm Swift Common Kingfisher Whitebreasted Kingfisher Bluetailed Bee-eater Green Bee-eater Indian Roller Hoopoe Crimsonbreasted Barbet Lesser Goldenbacked Woodpecker Indian Pitta Bush Lark Swallow Redrumped Swallow Brown Shrike Golden Oriole Black Drongo Ashy Drongo Ashy Swallow-Shrike Brahminy Mynah Rosy Pastor Common Mynah Tree Pie House Crow Jungle Crow Common Wood Shrike Blackheaded Cuckoo-Shrike Small Minivet Common Iora Redvented Bulbul Whitebrowed Bulbul Common Babbler Large Grey Babbler Whiteheaded Babbler Brown Flycatcher Brownbreasted Flycatcher Bluethroated Flycatcher Paradise Flycatcher Tailorbird Blue Chat Magpie Robin Indian Robin Orangeheaded Ground Thrush Whitethroated Ground Thrush Forest Wagtail Large Pied Wagtail Tickell's Flowerpecker Purplerumped Sunbird Loten's Sunbird Purple Sunbird White-eve Baya Weaverbird Whitebacked Munia Blackheaded Munia Rosefinch

to the Auroville nurseries where germination techniques were established and seedlings raised for planting in the Auroville forests.

It was fortuitous timing. The Auroville forests were well established, but in many areas were becoming dominated by A. auriculiformis which not only grew well, but had a high fecundity rate and the seedlings were forming dense impenetrable patches in some areas. It was the right time for under planting, and the TDEF is a forest that is used to growing in the shade. The seedlings of some species actually demand it for the first few years. Here was a whole new job that the greenwork enthusiasts could throw their energy into and over the next ten years vast areas of Auroville's 1000 hectares of greenbelt were transformed into an emerging ecosystem of the TDEF. Over 230 species of woody plants, trees, shrubs, lianas, as well as forest floor dwelling bulbs and epiphytic orchids were propagated in the nurseries and transported out into the forests. Each year 30-50,000 seedlings are planted out into the forests. It continues to be a work of passion for many of the people, to provide a secure home to a forest that is beautiful in its pristine state.

PEOPLE AND THE FOREST


Forests never stand in isolation. They always exist in relationship with the species that inhabit them, including the local people.. It became immediately clear that it was impossible to become involved in the forest without becoming involved with the local people, particularly those who had living traditions associated with the species of the TDEF. The funding of FRLHT encouraged an approach that included the traditional health practitioners, and documenting the knowledge that was in danger of being lost as India transformed itself into a developing country with all of the inherent upheavals and change that are inevitably felt in the rural landscape. Around half of the 1000+ angiosperm species found within the range of the TDEF have a documented use, either as medicinal plants or in cultural activities. But as in many cases around the world, the traditions were no longer as valued as they were before, even though many of the remedies were known to be effective. The quick fix of pills or injections are instantly attractive, particularly when satellite TVs pour out images of foreign affluence in the palm fronded huts of the local villages.

However the wisdom and the traditional knowledge and techniques have survived and they are providing some of the clues that are essential to renegotiating the social contract between today's expectations and the services that the forest can actually provide.

EXTENDING THE WORK TO THE BIO-REGION

The eco-restoration of Auroville has consequently extended past the boundaries of the city area, and now continues within a defined bio-region. This extends 40 km north of the township and includes an important wetland site called Kaluveli and its watershed. For the past three years, with funding assistance from the European Commission, a program has been running to develop a shared forest management plan for the TDEF. Within the framework of this project, work is going on in local villages to develop community structures that could take responsibility for forest assets. The younger generations have been identified as a key to the forest's future and so the project is promoting environmental education in a local high school by building and staffing an environment center, as well as becoming involved in other curriculum activities and local institutions. Green centers have been opened in the small villages where local people have access to traditional doctors, and classes are held for eco-clubs that have been established in local primary schools and high schools. It is an integrated approach that acknowledges that for the forest to survive it has to be made relevant to local people's needs, and that local people have to become aware of the assets provided by a healthy, functioning forest ecosystem.

Top: The young TDEF; **Bottom:** The ethnomedicinal forest of Pitchandikulam.

RARE AND THREATENED PLANT SPECIES OF THE TDEF

Family ANACARDIACEAE ANNONACEAE APOCYNACEAE APOCYNACEAE ARACEAE ASCLEPIADACEAE ASCLEPIADACEAE ASCLEPIADACEAE ASCLEPIADACEAE ASCLEPIADACEAE ASCLEPIADACEAE ASCLEPIADACEAE CAPPARACEAE CAPPARACEAE CELASTRACEAE CLUSIACEAE EBENACEAE EBENACEAE EBENACEAE EUPHORBIACEAE **EUPHORBIACEAE** EUPHORBIACEAE EUPHORBIACEAE FABACEAE FABACEAE FABACEAE LOGANIACEAE MELIACEAE MELIACEAE ORCHIDACEAE ORCHIDACEAE ORCHIDACEAE ORCHIDACEAE PASSIFLORACEAE RUBIACEAE RUTACEAE RUTACEAE SAPINDACEAE SAPOTACEAE STERCULIACEAE STERCULIACEAE VITACEAE

Botanical Name Semecarpus anacardium Polyalthia korinti Carissa salicina Vallaris solanacea Amorphophallus sylvaticus Caralluma indica Caralluma pauciflora Caralluma stalagmifera Ceropegia bulbosa Ceropegia candelabrum Ceropegia juncea Gymnema sylvestre Cadaba trifoliata Capparis rotundifolia Salacia chinensis Garcinia spicata Diospyros chloroxylon Diospyros ebenum Diospyros melanoxylon Dimorphocalyx glabellus Drypetes sepiara Mallotus rhamnifolius Suregada angustifolia Derris ovalifolia Ormocarpum cochinchinensis Pterocarpus marsupium Strychnos minor Aglaia elaeagnoidea Walsura trifoliata Eulophia epidendraea Habenaria roxburghii Vanda spathulata Vanda tesselata Adenia wightiana Tricalysia sphaerocarpa Chloroxylon swietenia Pamburus missionis Lepisanthes tetraphylla Manilkara hexandra Pterospermum suberifolium Pterospermum xylocarpum Ampelocissus tomentosa

Author Linnaeus (Dunal) Thw. Lam. (Roth.) Kuntze (Roxb.) Kunth. (Wight & Arn.) N.E. Br. (Wight) N.E. Br. Fischer Roxb. Linnaeus var. biflora (L.) M.Y. Ansari Roxb. (Retz) R.Br. ex Schultes (Roxb.) Wight & Arn. Rottler Linnaeus (Wight & Arn.) Hook.f. Roxb. J.Koen. ex Retz Roxb. Thw. (Wight & Arn.) Pax & Haffm. Muell.-Arg. (Baillon ex Muell.- Arg.) Airy Shaw (Wight & Arn.) Benth. (Lour.) Merr. Roxb. Dennst. (A.Juss.) Benth. (A.Juss.) Harms (Koen.) Schlt. (Pers.) R.B Sprenael (Roxb.) Hook. Ex Don (Wall. ex Wight & Arn.) Engl. (Dalz.) Gamble DC. (Wight) Swingle (Vahl) Radlk. (Roxb.) Dub. Í am (Gaertn.) Santapau & Wagh (Heyne ex Roth) Planchon

REPTILE SPECIES OF THE TDEF

Family BOIDAE BOIDAE COLUBRIDAE ELAIDAE ELAPIDAE TYPHLOPHIDAE VIPERIDAE VIPERIDAE AGAMIDAE AGAMIDAE AGAMIDAE CHAMAELONIDAE GEKKONIDAE GEKKONIDAE SCINCIDAE SCINCIDAE TESTUDINIDAE VARANIDAE

Scientific name Eryx conicus Eryx johni Ahaetulla nasutus Amphiesma stolata Atretium schistosum Boiga trigonata Dendrelaphis tristis Elaphe helena Lycodon aulicus Lycodon striatus Óligodon arnensis Oligodon taeniolatous Ptvas mucosus Xenochropis piscator Bungarus caeruleus Naja naja Typhlina bramina Échis carinatus Vipera russelli Calotes calotes Calotes rouxi Calotes veriscolor Chamaeleon zeylanicus Hemidactylus frenatus Hemidactylus maculatus Mabuya carinata Riopa punctata Geochelone elegans Varanus bengalensis

Author Schneider Russell Lacepede Linnaeus Daudin Schneider Daudin Daudin Linnaeus Shaw Shaw Jerdon Linnaeus Schneider Schneider Linnaeus Daudin Schneider Shaw Linnaeus Dum. & Bibr. Daudin Laurenti Schlegel Dum. & Bibr. Schneider Gmelin Schoepff Schneider

Common name Common Sand Boa Red Sand Boa Vine Snake Striped Keelback Olive Keelback Watersnake Common Cat Snake Bronzeback Tree Snake Trinklet Snake Common Wolf Snake Shaw's Wolf Snake Banded Kukri Snake Russell's Kukri Snake Rat Snake Chequered Keelback Common Krait Indian Cobra Blind Snake Saw Scaled Viper Russell's Viper Southern Green Calotes Forest Calotes Common Garden Lizard Indian Chameleon Southern House Gecko Rock Gecko Common Skink Snake Skink Starred Tortoise Common Indian Monitor

MAMMAL SPECIES OF THE TDEF

Family BOVIĎAE CANIDAE CANIDAE CEROPITHECIDAE Macaca radiata CEROPITHECIDAE Presbytis entellus CERVIDAE CERVIDAE CHIROPTERA CHIROPTERA CHIROPTERA CHIROPTERA CHIROPTERA ERINACEIDAE FELIDAE HERPESTIDAE HERPESTIDAE LEPORIDAE I ORISIDAE MURIDAE MURIDAE MURIDAE MURIDAE MURIDAE MURIDAE MURIDAE MUSTELIDAE PHOI IDOTA RODENTIA SCUIRIDAE SCUIRIDAE SCUIRIDAE SORICIDAE SUIDAE URSIDAE VIVERRIDAE

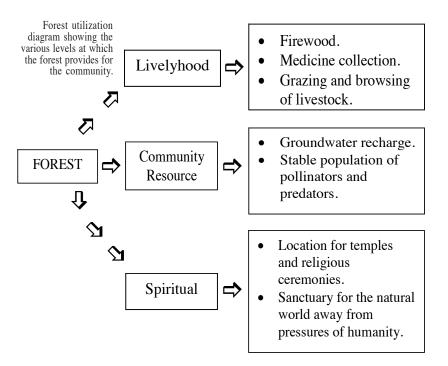
Scientific name Antilope cervicapra Canis aureus Vulpes bengalensis Axis axis Muntiacus muntjak Cynopterus sphinx Kerivoula picta Megaderma lyra Pipistrellus coromandra Pteropus giganteus Paraechinus micropus Felis chaus Herpestes edwarsi Herpestes smithi Lepus nigricollis nigricollis Loris tardigradus Bandicota bengalensis Bandicota indica Golunda ellioti Mus booduga Mus musculus Rattus rattus Vandeleuria oleracea Mellivora capensis Manis crassicaudata Hystrix indica Funambulus palmarum Ratufa indica Tatera indica Suncus murinus Sus scrofa Melursus ursinus Paradoxurus hermaphroditus Viverra zibetha

Author Linnaeus Linnaeus Shaw Geoffrov Dufresne Erxleben Zimmermann Vahl Pallas Geoffroy Gray Brunnich Blvth Guldenstaedt Geoffroy Gray F.Cuvier Linnaeus Gray & Hardwicke Bechstein Gray Grav Linnaeus Linnaeus Bennett Schreber Grav Kerr Linnaeus Erxelben Hardwicke Linnaeus Linnaeus Shaw Pallas Linnaeus

Common name Black Buck Jackal Indian Fox Bonnet Macaque Common Langur Chital Barking Deer Short-nosed Fruit Bat Painted Bat Indian False-vampire Bat Indian Pipistrelle Indian Flying Fox Pale Hedgehog Jungle Cat Common Mongoose Ruddy Mongoose Blacknaped Hare Slender Loris Indian Mole Rat Bandicoot Indian Bush Rat Indian Field Mouse House Mouse Common House Rat Long-tailed Tree Mouse Ratel Pangolin Indian Porcupine Three-striped Palm Squirrel Indian Giant Squirrel Indian Gerbil Grey Musk Shrew Wild Boar Sloth Bear Common Palm Civet (Toddy Cat) Large India Civet

The story of eco-restoration does not end with the propagation of plants, nor does it end with the successful re-establishment of an ecosystem over a few square kms. It spreads in ever expanding circles, reaching out to local people, to government officials, searching for ways to open people's eyes to the benefits of the forest. Without the will of the people within each strata of society an entity under such pressure as the TDEF cannot survive.

POST-TSUNAMI UPDATE


VIVERRIDAE

Perhaps the most important stories from the tsunami tragedy are the less visible ones. There are stories of how Aurovilians who had not worked together for years dropped everything to collaborate in the relief effort and so recaptured something of the spontaneous joy and fraternity of the early years of Auroville; of how a new generation of tech and relief-savvy Aurovilians seamlessly assumed control of a vast and complex organization; of how some of the much-criticized youth of Kuilapalayam came forward to help with the cleanup in the coastal villages; of the young people who came all the way from the U.K. to offer their help as they had heard that Auroville was really making a difference. And perhaps this is the real story: that after all these years of developing expertise in fields like village development, water recycling and purification, computer systems and computer-generated technology, alternative building methods etc. Auroville could at last bring them all together and do something that really made a difference

to the local villagers. At the same time, the professionalism of Auroville's relief and rehabilitation effort has enabled it to play a key role in assisting operations not only in the bioregion but in Tamil Nadu as a whole, forging important new relationships at the highest levels with the local and State governments as well as with international and national NGOs (information from the Auroville website: www.auroville-.org).

Nadukuppam School and Enviro-center.

CONCLUSIONS

The challenges facing each forest type are different, but some experiences can be drawn out to highlight what needs to be achieved in each situation.

It is clear that this forest will not survive unless it pays tribute to the local people. Humanity does not allow anything to exist without a reason, particularly when other competing uses can be made of the land, even if it is only the occasional grazing of goats. Therefore we need to recognize and highlight the values that the forest can provide to society.

There are three levels at which the forest provides: personal livelihoods, communal assets and spiritual sustenance. It is only the primary level that actually costs the forest in terms of extraction, the latter two are passive actions that are recognizable only when it is brought to

The Auroville plateau today.

public attention. Thus in order to regenerate the forest it is essential to identify the present livelihoods that are extracting resources and modify them to maintain a sustainable extraction that allows the forest areas to regenerate. In the case of the TDEF it is only goat grazing and fuel wood collection that fall into this category. It is the role of the ecological restorer to mediate between the users and the forest and to identify and develop alternative livelihoods that are attractive enough to allow the users to make a change. If this is carried out in conjunction with education about the communal assets that will multiple if the forest is allowed to regenerate, such as ground water percolation, habitat for pest predators and crop pollinators, then it is possible that the necessary social fences can be established to protect the forest during its reestablishment.

Eco-restoration has two major requirements: technical knowledge, such as knowledge of species, propagation techniques, and planting strategies; and political knowledge; a need to work on the social level to create conditions within the population, both locally and nationally, which are conducive to the forest's reemergence. To satisfy the first requirement is the simpler of the two; given enough time, enthusiasm, and dedicated workers the answers and knowledge can be gathered from the remnants of the forest. The political aspect is less straightforward. It exists in the world of local and national politics, where the weaknesses of personal greed and power are never far away. This work is not for the individual who only loves to be in nature, happy to find reasons to wander through the forest searching out flowers and seeds, observing the way evolution has adapted over the untold eons prior to our arrival. It is the work of the mover, the fixer, the talker. The first is restorative, the second exhausting. The first is the slow accumulation of verifiable knowledge, the second is seizing oportunities when they come and hoping that the ground will not shift or the political climate will not change on the whim of an election. But both are essential components of the struggle to create a planet rich in biodiversity.

REFERENCES

Champion, H. G. and Seth, V. K. 1968. A Revised Survey of the Forest Types of India. Government of India

- Meher-Homji, V.M. 1973. A phytosociological study of the Albizia amara Boiv. community of India. Phytocoenologia <u>1</u>(1): 114-129.
- Meher-Homji, V. M. 1974. The climate of Cuddalore a bioclimatic analysis. *Geographical Rev. India*. <u>36</u>(1):1-22.
- Meher-Homji, V. M. 1992. A document to help formulate a conservation strategy for peninsular India in relation to vegetation status and bioclimatic conditions. Final Tech. report Pitambar Pant. Natl. Environ. Fel., Ministry of Environ., New Delhi.
- Salim Ali. 1996. The book of Indian Birds, Bombay Natural History Society, Oxford University Press.
- Wikramanayake, E. et al. 2002 Terrestrial Ecosystems of the Indo-Pacific – A Conservation Assessment. Island Press, Washington DC

Received: 20 December 2004; Accepted: 5 March 2005