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ABSTRACT 

High capacities of variable renewable energy are expected to be grid-integrated in India 

by 2030 to mitigate climate change. This will pose new challenges for grid operators 

and, among other strategies, will call for high demand flexibility. Demand response 

(DR) has the potential to provide these flexibility services. With the projected increase 

in appliance ownership, residential energy consumption will increasingly contribute to 

peak load. Thus, this study aims to estimate the generation, storage and distribution 

capacity benefits of introducing residential DR to achieve 100% integration of net 

renewable energy in a community’s microgrid. The case study is a region in Auroville, 

India, comprising 100 households. 

Firstly, the distribution transformer (DT) and appliance-wise load profiles are generated 

for 2022 using metered time-series data and a survey conducted in Auroville. Then, 

based on future appliance ownership rates, population growth, and appliance efficiency 

improvements, the DT and appliance-wise load profiles are projected for 2030. 

Secondly, using a DR algorithm that considers appliance-specific DR factors and 

appliance-wise load profiles, the modified DT load profiles with DR are generated and 

the technical potential of DR is assessed. Lastly, the microgrid is designed for the DT 

load profiles with and without DR and a financial analysis is conducted. 

The technical potential of DR under the highest and lowest DR potential scenarios were 

20.7%, and 8.1%, respectively. The DR scenario, including only air conditioners and 

electric vehicles, termed DR_EV&AC, was the most financially attractive scenario with 

a technical potential of 15.2%. The reduction in NPC between DR_EV&AC and the 

scenario without DR was 3.2%. The LCOE for DR_EV&AC was 11.49 ₹/kWh and 

10.38 ₹/kWh, respectively, for maximum and minimum system capital cost (SCC) 

scenarios. The avoided cost of energy from DR_EV&AC was 0.27 ₹/kWh. ROI for 

maximum and minimum SCC scenarios were 30.93 and 35.26, respectively. Supposing 

these benefits were translated into incentives paid to the customers enrolled in DR 

programs, the share of the incentive to their average monthly bill was estimated at 

around 20.3%, which is attractive. Thus, this study demonstrated the potential of 

residential DR in Auroville, India.  
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CHAPTER 1 

INTRODUCTION 

This chapter provides an overview of the current and future trends in the electricity 

sector in India, with a particular focus on Auroville, a township in South India. 

Exploring the emerging issues and discussing the concept of demand response, it 

identifies the research questions, objectives, expected outcomes, scope and limitations 

of the study. 

1.1 Background of the Study  

As of 2021, India was the third-largest electricity-consuming country in the world 

(Statista, 2023). Its installed capacity and electricity generations are 416 GW and 1.62 

PWh, respectively (Ministry of Power, 2023). In 2017, its per capita electricity 

consumption was only 1,122 kWh (Statista, 2021), less than 40% of the world average 

of 3,000 kWh (U.S. Energy Information Administration, 2017). By 2030, the electricity 

demand and consumption are set to increase to 792 GW and 2.46 PWh, respectively, 

due to expanding economy, urbanization, industrialization, population, etc. 

(International Energy Agency, 2021b).  

The share of the residential sector in India’s final electricity consumption in 2021 was 

26% (Statista, 2022). This sector's electricity use will triple over the next two decades 

because of the abovementioned factors, leading to rising cooling demand, electric 

vehicle (EV) penetration, and increasing appliance ownership (IEA, 2021b). For 

instance, room air conditioner (RAC) stock is projected to grow more than 20 times by 

2040 (IEA, 2021b). In forecasting the penetration of electric two-wheelers in India, Niti 

Aayog, the Government of India’s policy think tank, expects a penetration rate above 

75% by 2035 in 4 out of 8 scenarios (Niti Aayog, 2022). Since these appliances are 

typically used or charged in the evenings, the early evening electricity demand is 

expected to increase drastically (IEA, 2021b). 

India’s power sector is responsible for around 50% of the country’s carbon emissions 

(IEA 2021b), with a generation mix consisting of fossil fuels (57.6%), hydro (11.4), 

nuclear (1.7%) and other renewables (29.3%) in 2022 (MoP, 2023). Though, on the one 

hand, these emissions must reduce to tackle climate change, on the other hand, the 
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country must be able to cope with its growing electricity demand needs. This challenge 

needs to be addressed through both supply and demand side interventions. On the 

supply side, this can be done by increasing the share of renewables in the generation 

mix, while on the demand side, this is possible through various ways such as lifestyle 

and behavioral changes, increasing the energy efficiency of systems, and using demand 

response (DR) to reduce peak demand by curtailing or shifting the demand to off-peak 

periods. According to the Australian Renewable Energy Agency, "DR is the voluntary 

reduction or shift of electricity use by customers, which can help to keep a power grid 

stable by balancing its supply and demand of electricity" (Australian Renewable Energy 

Agency, 2022). 

On the supply side, India has an ambitious renewable energy target of meeting 50% of 

its electricity requirements from renewable energy by 2030 (Government of India, 

2021) or 450 GW from solar and wind, and 50 GW from hydro (Carboncopy, 2021; 

Ministry of New and Renewable Energy, 2021). On the demand side, there are various 

energy efficiency and conservation initiatives from the Government of India (GoI) for 

different sectors, such as the Perform, Achieve and Trade (PAT) scheme for the 

industrial sector, Energy Conservation Building Code (ECBC) for commercial 

buildings, Eco Niwas Samhita for residential buildings and Standards & Labelling 

programme for end-use electrical appliances. The PAT scheme is a market-based and 

regulatory instrument for achieving energy efficiency in selected energy-intensive 

industries (Bureau of Energy Efficiency, 2020a). ECBC lays down the minimum energy 

efficiency levels for large commercial buildings (BEE, 2017) and Eco Niwas Samhita 

is a similar code for residential buildings (MoP, 2020). The Standards & Labelling 

programme is a scheme to provide customers with the required information regarding 

the energy performance of energy-intensive end-use appliances before purchasing 

them. Currently, it targets 29 appliances or equipment (BEE, 2020b). 

While the country has various energy conservation and efficiency initiatives, DR is in 

its nascent stage. DR has several benefits such as generation, transmission and 

distribution capacity deferral (Advanced Energy Economy Institute, 2017), reduction 

of the peak-to-average ratio (Nair & Rajasekhar, 2014; Pal et al., 2018), ability to 

integrate renewable energy (Srivastava et al., 2021) and reduction of renewable energy 

curtailment (McPherson & Stoll, 2020) among other benefits. A few pilots in the 
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commercial and industrial (C&I) sectors were run by Tata Power electric utility in 

Mumbai in 2014, Tata Power Delhi Distribution Limited (TPDDL) in Delhi in 2016, 

and Jaipur Vidyut Vitran Nigam Limited in Rajasthan in 2013 (Hale et al., 2018; Sarkar 

& Mukhi, 2016). TPDDL launched the first-ever residential DR pilot in India in 2021, 

which involved 4,000 residential customers in Delhi who had smart meters (TPDDL, 

2021). Details of these pilots are provided in Appendix A. The peak load reduction 

potentials were 18 MW, 12 MW, 22 MW and 7.68 MW, respectively, for the pilots run 

in Mumbai, Delhi (2016), Rajasthan, and Delhi (2021). 

India’s electricity demand is increasing. At the same time, the country aims to increase 

the share of renewable energy – mainly solar and wind – to 50% in its generation mix, 

which could potentially lead to supply-demand gaps during the peak demand hours in 

the evenings. The residential sector's electricity demand is also growing, mainly due to 

the increasing ownership of ACs, EVs and other home appliances. It would contribute 

in a major way to the evening peak loads. Therefore, managing the residential demand 

by shedding or shifting some non-critical loads to other off-peak hours in the day is 

important to avoid forced outages due to supply-demand gaps. It is a service that DR 

provides, and as its adoption is almost non-existent in the residential sector in India, 

this study will focus on DR in the residential sector in India. 

The research will be conducted in Auroville, a universal township in Tamil Nadu, India, 

with a population of around 3,305. Its electricity demand grew from 3.6 to 5.9 GW from 

2010 to 2017 (Auroville Consulting, 2018). As of 2020, Auroville’s per capita 

electricity consumption was 2,367 kWh and had grown by 47% in the previous 8 years 

(AVC, 2021). Since Auroville’s residential sector’s share in the final electricity 

consumption was as high as 57% as of 2017 (AVC, 2018), both the total increase in 

demand and per capita electricity consumption could be due to increasing household 

appliance ownership rates, especially due to energy-intensive appliances such as air 

conditioners and electric vehicles; along with a population growth rate of 3% per annum 

(many people join township as it is in the making for a population of up to 50,000 

people from around the world to experiment with human unity in diversity).  

Currently, the township’s generation mix consists of rooftop solar energy (23%), wind 

wheeling (25%), and grid energy (52%). 700 kW of rooftop solar energy is installed. 

Under Phase 1 & 2 of the Smart Mini Grid project in Auroville, along with solar, 60 
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kWh of lithium-ion battery storage and 85 smart meters including data management 

systems have been installed using a corporate social responsibility grant (AVC, 2021a, 

2021b). A long-term renewable energy sourcing plan was prepared considering various 

renewable capacities, energy storage capacities, and energy efficiency scenarios. The 

report points out that a 100% sourcing of Auroville’s electricity demand through 

renewable energies could be achieved by 2030 (AVC, 2021a). This is mainly because 

the cost of solar energy in the region, which is at 3.10 ₹/kWh (TNERC, 2021), is 

currently lower than the cost of grid supply at 6.75 ₹/kWh (TNERC, 2022), and cost 

reductions in energy storage are expected in the near future (AVC, 2021a). 

1.2 Statement of the Problem 

Auroville’s increasing electricity consumption and demand will pose challenges, 

especially as the township plans for 100% renewable energy sourcing. 

• As Auroville’s electricity demand increases, there is a possibility that the 

secondary distribution transformers (DT) in the township must be upgraded and 

Auroville would bear its cost. 

• Despite battery storage, solar energy surplus is exported to the grid and not 

credited to Auroville by the Tamil Nadu Generation and Distribution 

Corporation (TANGEDCO) (AVC, 2021a). As planned, when more rooftop 

solar will be installed in the community to achieve its 100% renewable energy 

sourcing plan, the un-credited surplus exported to the grid will also increase, 

incurring financial losses to the township. 

• When the electricity demand is low during periods of high renewable energy 

availability, as more renewable energy capacity is installed, more storage will 

be required to reduce the surplus exported to the grid, requiring higher storage 

capacities. 

• As storage is an expensive option, there is a need to find and assess alternative 

cheaper options for optimal sizing of the generation and storage technologies. 

Noting the residential sector’s contribution to the growing electricity demand, there is 

a need to manage its demand by curtailing and shifting residential loads from peak 

hours to periods of high renewable energy availability. This reduces the peak load 

resulting in DT capacity deferral, and instead, the demand increases during periods of 

high renewable energy availability, resulting in a reduction of the surplus exported to 
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the grid and the storage capacity. Therefore, as the appliance ownership rates increase 

contributing to the evening peak loads, it is important to assess the future potential of 

DR in the residential sector in Auroville to see to what extent it can reduce the 

generation and storage capacities, as well as defer DT upgrades in the future. The 

learnings from this study would be relevant for India and other developing countries, 

which aim to increase the share of renewable energy in their generation mix and 

simultaneously face the challenge of increasing electricity demand and consumption, 

especially from the residential sector. 

1.3 Research Questions 

According to the problem statement mentioned above, the research questions of this 

study are: 

1. Considering the increasing cooling demand, EV penetration, and appliance 

ownership in the residential sector in Auroville/India, what will be the 

domestic load profile of Auroville by 2030? 

2. How much is the technical DR potential of the residential sector in 2030 in 

Auroville? 

3. What are the costs and benefits to the microgrid with 100% net RE generation 

(based on a constraint on net import and export to the grid)? 

 

1.4 Objectives of the Study 

Auroville has set a target to achieve a 100% net sourcing of its electricity needs from 

renewable energy by 2030. In this context, the overall objective of this study is to find 

out the generation, storage and distribution capacity benefits of introducing residential 

DR, through a forecast of appliance-wise domestic load profiles, to the achievement of 

100% integration of net renewable energy (based on a constraint on net import and 

export to the grid). The specific objectives are: 

1. To forecast the distribution transformer and appliance-wise domestic load 

profiles for the residential community in Auroville in 2030. 

2. To assess the residential community’s appliance-wise and aggregated 

technical DR potential. 

3. To find the technical and financial feasibility of sourcing 100% renewable 

energy in scenarios with and without residential DR in the community. 
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1.5 Scope and Limitations of the Study 

• The community microgrid referred to in this study is only for all loads connected 

to the 250 kVA secondary distribution transformer (DT) named “Admin DT” in 

Auroville, India. 

• Only the residential loads connected to the “Admin DT” are referred to as the 

residential community in this study.  

• The scope of the DR analysis is only for the residential community, whereas the 

projected load in 2030, the renewable energy sourcing, and the costs and 

benefits of the DR scenario are considered for the entire community microgrid. 

• The DR potential is assessed only for technical potential. 

• In the residential community, the DR potential is assessed only for air 

conditioners, water heaters, electric vehicles, washing machines and 

refrigerators, and the rationale for choosing only these appliances will be 

explained in the next chapter. 

• The DR assessment is only for managing the power demand and doesn’t include 

voltage and frequency regulation. 

• The timeframe of 2030 is chosen due to Auroville’s plans to install a community 

microgrid by 2030 that can run with 100% renewable energy but uses the grid 

for balance. At the same time, since it is quite close to the future, many 

projections for the residential demand based on which future DR potential will 

be estimated could hold true to a large extent.  

1.6 Organization of the Study 

Chapter 1 introduced this study by presenting the background of the study, the problem 

statement, research questions, study objectives, and the scope and limitations of this 

study. The literature reviewed to conduct this study is provided in Chapter 2, where the 

main concepts of DR, DR potential assessment framework, a review of studies that 

assessed DR potential, among other topics, are discussed. Chapter 3 explains the 

methodology of this study, where the several steps for addressing each specific 

objective are explained in detail. Chapter 4 provides the results of each specific 

objective of this study, followed by a discussion of the results. Chapter 5 will conclude 

this study and discuss future recommendations.
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides the literature reviewed to conduct this study. The first sections, 

2.1-2.3, provide the main concepts of demand response (DR) – a primer on DR 

including its definition, origins and services; the different categories of DR potentials; 

and the different types of DR programs. Section 2.4 lays the framework to assess all the 

categories of DR potentials and identifies the major steps that need to be viewed in 

detail to conduct this study. The subsequent sections 2.5 - 2.8 elaborate on these major 

steps – identification of appliances suitable for DR, approach for estimating residential 

appliance-wise load profiles and a review of studies that assessed theoretical and 

technical DR potentials – and highlight the kind of inputs required for the assessment. 

Finally, sections 2.9, 2.10 and 2.11 deal with the sizing of a microgrid, the various cost 

and profits of DR, and the policies and regulations enabling DR in India. 

2.1 Demand Response: A Primer 

2.1.1 Definition of Demand Response 

Table 2.1 provides the definitions used by different organizations or authors. Australian 

Renewable Energy Agency (AREA) considers DR as a voluntary action to change 

(reduce or shift) the electricity usage of customers (AREA, 2022). Federal Energy 

Regulation Commission (FERC) also considers DR as a change in the electricity usage 

of demand-side resources while specifying how these changes are triggered – due to 

changes in electricity prices or incentive payments. Both sources consider DR as a way 

to reduce supply-demand gaps (“keeps a power grid stable by balancing its supply and 

demand of electricity” or “system reliability is jeopardized”) (FERC, 2022). However, 

Albadi & El-Saadany (2007) don’t discuss DR as a way to reduce supply-demand gaps 

but specify the actions that will modify the electricity usage – “alter the timing (shifting 

the demand), level of instantaneous demand, or the total electricity consumption 

(shedding load)” (Albadi & El-Saadany, 2007).  

Table 2.1 

Definitions of demand response from various sources 
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Source Definition 

Australian Renewable 

Energy Agency 

(AREA) 

“Voluntary reduction or shift of electricity use by 

customers, which can help to keep a power grid stable by 

balancing its supply and demand of electricity.” 

United States Federal 

Energy Regulation 

Commission (FERC) 

“Changes in electric usage by demand-side resources 

from their normal consumption patterns in response to 

changes in the price of electricity over time, or to 

incentive payments designed to induce lower electricity 

use at times of high wholesale market prices or when 

system reliability is jeopardized.” 

Albadi & El-Saadany 

(2007) 

“All intentional modifications to consumption patterns of 

electricity of enduse customers that are intended to alter 

the timing, level of instantaneous demand, or the total 

electricity consumption.” 

 

2.1.2 Origins of Demand Response 

Historically, the power industry was mostly a monopoly, with state-owned companies 

performing generation, transmission and distribution (vertically integrated). This was 

mainly due to economies of scale, where it was viewed that one large entity catering to 

electricity demands would be more efficient than several smaller ones in competition. 

However, during the 1970s, due to technological advances, smaller generation units 

(less than 500 MW) also became economically viable. During the same period, 

awareness of the consequences of GHG emissions was also growing. Furthermore, due 

to the 1973 oil crisis, electricity security was questioned and the need to diversify the 

power generation mix was identified (Lotfi et al., 2019). 

Due to the socio-economic aspect and the environmental sustainability of power 

systems, the above events caused a global electricity market reform. They resulted in 

two parallel movements: a) unbundling and deregulation of the power industry and 2) 

including clean and renewable energy into the generation mix. Unbundling of the power 

industry means separating the generation, transmission and distribution activities 

(Florence School of Regulation, 2021), and deregulation means including private 

entities in the electricity market (Raikar & Jagtap, 2018). Renewable energy is 

intermittent and non-dispatchable, which makes it unreliable (Lotfi et al., 2019). Thus, 

in contrast to the classical philosophy of being able to supply all demand whenever and 
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in whatever quantity, as the power industry was restructuring, a new philosophy 

emerged which says that if the fluctuations in demand are minimized, the system will 

be the most efficient (Albadi & El-Saadany, 2007). Hence, the demand side also started 

participating actively in the power industry, and demand response originated. The 

United States, the United Kingdom and European Union were the first to implement 

DR programs by including DR in their legislation (Lotfi et al., 2019). Australia, 

Singapore, Chile, China, and Colombia are also implementing or adopting important 

measures to implement DR (IEA, 2021a). 

2.1.3 Demand Response Program Services 

DR can provide different services to the system by peak clipping, valley filling and load 

shifting. They are typically behaviours that are managed by the utilities. Peak clipping 

is a service that reduces the peak load demand through curtailment of some loads when 

the supply cannot meet the demand effectively. Valley filling is a service that increases 

the off-peak load by increasing the load, such as battery storage charging, EV charging, 

thermal storage for water heaters, etc. Often, this service increases electricity 

consumption without increasing the electricity bill. Load shifting is a service that shifts 

the loads from one period to another, generally from peak to off-peak hours. This 

duration between these two periods is known as the shifting time. These services are 

illustrated in Figure 2.1a - Figure 2.1c. 

Figure 2.1 

Peak clipping, b) valley filling and c) load shifting services offered by DR 
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Note. Adapted from Li et al. (2017). 

2.2 Categories of Demand Response Potentials 
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DR potential is the potential of the DR programs to provide DR services. Therefore, it 

is crucial first to assess the DR potential in a location so that we can size the other 

generation resources and know whether an investment in this field would be profitable 

or not. Different terms have been used in the literature for demand response potentials, 

such as demand-side flexibility, flexible demand potential, flexible load potential, and 

load flexibility potential (Dranka & Ferreira, 2019). The potential of DR can be either 

theoretical, technical, economic, or achievable, depending on the assumptions used 

(Müller & Möst, 2018). While there is a general agreement in how most authors define 

the theoretical and economic DR potentials, it is not true with technical and achievable 

DR potentials. So, the following section will provide the different definitions of these 

DR potential categories and the definitions that will be used in this study (Dranka & 

Ferreira, 2019). 

2.2.1 Theoretical Demand Response Potential 

There is a consensus on the definition of theoretical DR potential. It is the overall DR 

potential that is available in the power system. It is the absolute maximum potential and 

comprises all the facilities and devices of the customers suitable for DR (Dranka & 

Ferreira, 2019; Gils, 2014; Müller & Möst, 2018). 

2.2.2 Technical Demand Response Potential 

The technical DR potential is smaller than the theoretical potential because it considers 

technical restrictions (Müller & Möst, 2018). There is no consensus on the way these 

restrictions are defined. For example, according to Gils (2014), only the equipment that 

is currently controlled by information and communication infrastructure is considered 

in the technical DR potential assessment. According to Grein & Pehnt (2011), only the 

load that is temporally available for time shift considering "technical peculiarities and 

legal regulations" is considered for technical DR potential assessment. According to 

Dranka & Ferreira (2019)   the technical DR potential is defined as the potential derived 

from the theoretical potential by considering technical restrictions such as shifting time, 

duration and the number of interventions. 

2.2.3 Economic Demand Response Potential 

There is again a consensus on the definition of economic DR potential. It is smaller 

than the technical potential and depends on the type of DR program – price-based or 

incentive-based (Müller & Möst, 2018). It also depends on the capital costs (smart 
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meter, information and communication technologies (ICT), etc.) and operational costs 

(Dranka & Ferreira, 2019).  

2.2.4 Achievable Demand Response Potential 

Achievable DR potential is smaller than the economic DR potential. Dranka & Ferreira 

(2019)  consider it as the customers' acceptance level and load interventions. It is further 

divided into maximum achievable potential (MAP) and realizable achievable potential 

(RAP). MAP is derived by considering the restrictions from consumers' resistance and 

market and societal barriers limiting consumers from participating in DR programs. 

RAP is derived from MAP considering regulatory, financial and political barriers 

(Dranka & Ferreira, 2019). 

Table 2.2 shows the results of some studies that have estimated the theoretical, 

technical, economic and achievable DR potentials either for or including the residential 

sector in different regions. An overview of the studies that assessed the theoretical and 

technical DR potentials will be provided later. An overview of the studies that estimated 

the economic and achievable DR potentials are provided in Appendices B and C, 

respectively. 

 

Table 2.2 

Theoretical, technical, economic and achievable potentials estimated by different 

authors for different regions, including the residential sector  

Authors 

DR 

potential 

category 

Country/region 
Sectoral 

coverage 
Results 

Grein & Pehnt 

(2011) 
Theoretical Germany 

C, I & Ra 

refrigeration 

systems 

4.2 GW (6% of 

the maximum 

power 

demand in the 

country) 

Söder et al. 

(2018) 
Theoretical 

Denmark, 

Estonia, 

Finland, Latvia, 

Lithuania, 

Norway, & 

Sweden 

C, I & R 

12 – 23 GW 

with a peak load 

of 77 GW 
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Authors 

DR 

potential 

category 

Country/region 
Sectoral 

coverage 
Results 

Gils (2014) Theoretical 
34 countries in 

Europe 
C, I & R 

61 GW load 

reduction & 68 

GW load 

increase 

potential 

Dranka & 

Ferreira (2020) 
Theoretical Brazil C, I & R 

12.8 GW in 

2017 & 25.6 

GW in 2050 

Babrowski et al. 

(2014) 
Theoretical 

Germany, 

Denmark, 

Finland, 

Netherlands, 

Switzerland, & 

United 

Kingdom 

residential 

24% of the 

vehicles are 

constantly 

available for 

load shifting 

when only home 

charging is 

allowed 

Kwon & 

Østergaard 

(2014) 

Technical Denmark C, I & R 

2.48 GW in 2h 

& 2.11 GW in 

24h time frame 

in 2050 

Stötzer et al. 

(2015) 
Technical 

Medium-sized 

German cityb  

Residential 

& 

Commercial 

8 GW (16% of 

the peak 

demand in the 

residential & 

commercial 

sectors) in 2030 

Müller & Möst 

(2018) 
Technical Germany 

Industry, 

tertial & 

residential 

sectors 

2.5 GW for 

2035 (RE - 

60%) & 2.3 GW 

for 2050 (RE - 

80%) 

Alfaverh et al. 

(2021) 
Technical 

United 

Kingdom 
Residential 

23% and 15% 

reduction in the 

morning and 

evening peak 

loads, 

respectively 

AEE Institute 

(2017) 
Economic 

Michigan, 

United States 
Residential   

382 MW for 

CPP & 151 MW 

for DLCc 
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Authors 

DR 

potential 

category 

Country/region 
Sectoral 

coverage 
Results 

Nair & 

Rajasekhar 

(2014) 

Economic India 
5 

households 
2.8 kW  

Medha et al. 

(2019) 
Achievable United States 

Mass 

marketd 4.3 GW 

TPDDL (2022) Achievable Delhi, India 

4,200 

residential 

customers 

7.68 MW during 

16 events called 

in a span of 3 

months 

 

Note. a - commercial, industrial and residential is abbreviated as C, I & R; b – a 

hypothetical city with 500,000 citizens; c – CPP is critical peak pricing and DLC is 

direct load control (will be explained in the following section); d – mass market consists 

of AC, thermostat control, water heater and other behavioural DR. 

 

2.3 Types of Demand Response 

In general, customers alone will not be motivated to provide DR services to the utility, 

as seen in the earlier section. So, there are a few ways in which they can be motivated 

to participate in DR programs. Depending on the motivation method used to encourage 

the customers to participate in DR programs, DR programs can be categorized as price-

based or incentive-based. In price-based programs, the customers voluntarily change 

their load in response to price signals. In incentive-based programs, they are paid for 

the achieved load reduction over a specified period (Paterakis et al., 2017). This section 

will elaborate on both these types of DR programs. 

2.3.1 Price-Based DR 

Electricity can be priced statically or dynamically. Static prices do not change when the 

demand changes, but dynamic prices change when the demand varies and depends on 

the demand (Dutta & Mitra, 2017). So, under static pricing schemes such as flat or 

block rate tariffs, the customers are not encouraged to shift some of their electricity 

consumption to off-peak periods, thereby reducing the peak load. However, with 

dynamic pricing, such as time-of-use (TOU) tariffs, critical peak pricing (CPP), 

variable peak pricing (VPP), and real-time pricing (RTP), the customers are encouraged 

in different ways to participate in DR services. Typically, price-based DR programs are 
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suitable for residential customers (Li et al., 2017). The following sections elaborate on 

these different price-based programs. 

 Time-of-Use (TOU) 

TOU tariffs reflect, to an extent, the variations in electricity provision costs. Electricity 

provision costs also vary within a day and season depending on the demand and market 

conditions. TOU tariffs typically include a peak rate, an off-peak rate and sometimes, 

a shoulder rate (Paterakis et al., 2017). They are pre-determined tariffs that are high 

during peak hours and low during off-peak hours. Shoulder time is when electricity 

demand is ramping up or down, and shoulder rate is the tariff associated with this 

period. Figure 2.2 shows the off-peak, shoulder and peak TOU rates (the tariff rates are 

only for illustration and not real). TOU tariffs are also called the time of day (TOD) 

tariffs (Dutta & Mitra, 2017).  

Figure 2.2 

Illustration of TOU tariff 

 

Note. Adapted from Guerrero et al. (2018). 

 

 Critical Peak Pricing (CPP) 

In CPP, the prices are very high during a few peak hours in a season or year, known as 

critical peak events, and discounted rates are applied during the remaining periods to 

compensate for the high prices occurring at these peak events (Energysage, 2021). The 

utility informs the customers about these events on short notice, ranging from even 

minutes to hours before the event (Paterakis et al., 2017). In TOU pricing, the prices 
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and the periods when the different prices are applied are known well in advance. 

However, in CPP, the price applied during peak events is the same for all peak events 

and is known in advance, but the periods when these rates are applied are known only 

on short notice. 

 Variable Peak Pricing (VPP) 

VPP is similar to CPP, except the prices for critical peak events vary. In some cases, 

the prices are chosen from a set of pre-determined tariffs, and in some cases, they 

depend on the wholesale electricity market prices (Badtke-Berkow et al., 2015). Again, 

the customers are informed beforehand about the peak events and the corresponding 

rates. 

 Real-Time Pricing (RTP) 

As the name indicates, in RTP, the prices are updated frequently to reflect the true 

electricity supply costs more accurately. Typically, they are updated hourly. Here, the 

prices and the periods when these will be applied are not known in advance; therefore, 

this pricing scheme is the riskiest and most uncertain for consumers. And since the 

prices change at such short intervals, it is necessary to have advanced communication 

technologies and robust databases to inform the customers of the changing prices and 

to store and transfer high data rates (Dutta & Mitra, 2017).  

2.3.2 Incentive-Based DR 

Unlike price-based DR programs, in incentive-based DR programs, the customers are 

offered incentives, typically monetary incentives, to change their usual consumption 

patterns. Once the commitment from the customers is made through contracts, or any 

other form, with the utility or grid operators, they are expected to reduce the load as 

defined in the contracts. Failure to do so usually results in a penalty for the customers.  

Direct load control (DLC), interruptible/curtailed service, demand bidding, capacity 

markets, emergency demand response, and ancillary service markets consist of 

incentive-based DR programs (Sharifi et al., 2017). Typically, these programs suit 

industrial and big commercial customers, and the residential sector can participate 

through aggregators (Li et al., 2017). The following section will elaborate on these 

different incentive-based DR programs. 

 Direct Load Control (DLC) 
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The utility or an aggregator can remotely control customers' appliances in the DLC 

program. The customers must have a remote-control switch system so that the appliance 

can be rescheduled, turned on and turned off. The type of appliance, the duration of the 

interruption and the number of such interruptions in a year are all defined in the 

contract. These programs typically target many small customers. The participants are 

compensated through extra payments or electricity bill discounts. Since these programs 

are managed by the utility, active involvement of the customer is not needed and they 

are often not notified in advance of the interruption (Li et al., 2017; Paterakis et al., 

2017). 

 Interruptible/Curtailable Service (ICS) 

The utility notifies customers to reduce loads to some level when the grid is congested 

or during peak periods. Unlike DLC, the typical customers are from the industrial or 

large-scale commercial sectors. The participants are again compensated through 

discounted electricity bills. However, a penalty is applied when the load reduction from 

the customer is not enough in the specified period because this is a mandatory program 

(Aalami et al., 2010). There is no penalty in the DLC program because the participant 

is not involved. However, since the result depends on the participant in ICS, a penalty 

is applied for non-compliance (Li et al., 2017).  

 Demand Bidding 

In demand bidding, the utilities do not notify the customers. Instead, they announce the 

quantity of electricity that must be reduced and the customers bid on the reduction they 

can make. If the bid is accepted, the customers must provide the necessary curtailment, 

and if not, they are penalized. Again, this is suitable for industrial and large commercial 

customers (Krarti, 2018). 

 Capacity Markets, Emergency Demand Response, & Ancillary Service 

Markets 

Wholesale market providers usually offer capacity market programs. In capacity 

markets and emergency demand response programs (EDRP), the curtailed load from 

the customers is treated as system capacity because they reduce the generation capacity. 

EDRP is a voluntary program; thus, the customers are not penalized if they fail to curtail 

load (Aalami et al., 2010). They are called only during emergencies (Contreras et al., 

2016). In ancillary service markets, the customers bid for electricity reductions, similar 
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to demand bidding. However, these bids are used as operational reserves and to 

maintain the system reliability by the independent system operator (ISO). Like the other 

incentive-based programs, the customers are penalized for non-compliance and are 

awarded for compliance. The customers are from the industrial or large-scale 

commercial sector. However, small customers can also participate in these programs 

through an aggregator (Mansouri et al., 2021). 

Table 2.3 summarizes the key information from the above sections. As noted earlier, 

price-based DR programs are more suitable for residential customers and incentive-

based DR programs are more suitable for large commercial and industrial customers. 

Sometimes, residential customers can also be included in incentive-based programs 

through aggregators. In price-based programs, the risk to the customer increases with 

increasing uncertainty in the rates and the periods when these rates are applied. In 

incentive-based programs, the risk to the customers is through the penalty factor and 

loss of convenience. The DR potential will depend on the selected DR program; 

therefore, identifying a suitable DR program will be important for assessing DR 

potential and its success when implemented. 

Table 2.3 

Summary and comparison of different types of DR programs 

DR 

program 

Category of DR 

program 
Type of customer Penalty 

Risk to 

customer 

TOU 

Price-based 

industrial, commercial, 

residential 
no low 

CPP 
industrial, commercial, 

residential 
no medium 

VPP 
industrial, commercial, 

residential 
no 

medium to 

high 

RTP 
industrial, commercial, 

residential 
no high 

DLC 

Incentive-based 

residential no low 

ICS 
industrial, commercial, 

aggregator 
yes medium 

Demand 

bidding 

industrial, commercial, 

aggregator 
yes medium 
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Capacity 

markets, 

EDRP,  

and 

ancillary 

service 

markets 

industrial, commercial, 

aggregator 
yes medium 

 

2.4 Demand Response Potential Assessment Framework 

As seen in the previous section, there are various DR potential categories, and hence 

have different assessment methodologies. However, depending on whether the 

electricity demand is seen at an aggregate or decomposed level, these methodologies 

can be classified broadly into these two methods. In the aggregated approach, the 

potential is assessed using market mechanisms and needs price elasticity of demand as 

input data. In the second approach, the electricity consumption is decomposed into 

many end-use processes and using certain technical criteria specific to each process, the 

DR potential is assessed (Kwon et al., 2014). The price elasticity of electricity in the 

residential sector is complex due to the varied consumption patterns of domestic 

customers. Furthermore, it is difficult to obtain or derive this data for India. Therefore, 

the decomposition method will be used in this study to estimate the DR potential.  

Dranka et al. (2019) noted that an increasing number of studies focused on assessing 

different categories of DR potentials with different assumptions. They pointed out that 

a general procedure for estimating the different DR potential categories was missing. 

Therefore, they reviewed the literature and developed a framework for estimating the 

different categories of DR potentials. Since their work was found to be comprehensive, 

their framework based on the decomposition method will be used in this study and is 

described below.  

Figure 2.3 shows the steps in estimating different DR potential categories, starting with 

the theoretical potential till the achievable potential. These steps can be followed to 

estimate the DR potential in any sector – industrial, commercial and residential, and are 

explained below. Sections 2.4.1 to 2.4.4 explain briefly the steps in the flowchart related 

to theoretical, technical, economic and achievable DR potentials for the residential 

sector.  
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Figure 2.3 

Process and framework for estimating the various DR potential categories 

 

Note. Adapted from (Dranka et al. (2019). 

2.4.1 Theoretical Demand Response Potential 

Step 1: To identify the suitable appliances for the DR program depending on the 

characteristics of the appliance to shift or shed loads, or whether it is classified as 

deferrable or adjustable loads. Note that the term “appliance” in the flowchart can be 

replaced with “process” for industrial or commercial sectors. 

Step 2 – 4: To estimate or calculate the aggregated annual electricity consumption 

(GWh), maximum aggregated installed capacity (GW), and the typical load profile (%) 

of each appliance identified in Step 1. 

Step 5: To calculate the hourly electricity demand (GW) using the following equation 

for each appliance: 

Hourly electricity demand = (Annual electricity demand x Load profile) / Full load 

hours (GW)                                                                         Equation 2.1 
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Step 6: To estimate the share of flexible demand for each appliance so that the 

theoretical hourly electricity DR potential can be derived from the hourly electricity 

demand.  

The sum of all hours from each appliance will result in the total theoretical DR potential 

(Dranka et al., 2019). 

2.4.2 Technical Demand Response Potential 

Step 7 – 8: Technical restrictions typically depend on the shifting time, duration, and 

the number of interventions. The technical DR potential is assessed using an 

optimization modeling approach such as linear or stochastic programming (Dranka et 

al., 2019). 

2.4.3 Economic Demand Response Potential 

Step 9 – 10: Economic restrictions typically depend on the DR investment and 

operational costs. Again, using an optimization modeling approach, the economic DR 

potential is assessed (Dranka et al., 2019). 

2.4.4 Achievable Demand Response Potential 

Step 11 – 12: Depending on a few qualitative variables, such as informational, 

technical, legal, financial, and organizational barriers, the consumer’s level of 

acceptance is determined. Combining this with technical or economic optimization 

models, the achievable potential is assessed (Dranka et al., 2019). 

2.4.5 Discussion 

The scope of this study is the assessment of technical DR potential. For this purpose, 

the major steps in this framework can be condensed and are 1) identification of 

appliances suitable for DR, 2) estimation of the load profiles for each appliance selected 

for DR, 3) assessment of the theoretical DR potential and 4) assessment of the technical 

DR potential. Thus, the subsequent sections will elaborate on each of these major steps 

to assess the technical DR potential in the context of the case study region. 

2.5 STEP 1: Identification of Appliances Suitable for Residential Demand 

Response  
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The starting point of DR potential assessments is to identify the set of appliances 

suitable for the DR programs. Generally, appliances can be classified in two ways 

depending on their operational characteristics: 

1. Deferrable and non-deferrable loads 

2. Adjustable and non-adjustable loads (Li et al., 2017). 

 

Deferrable and non-deferrable loads are distinguished by their ability to shift or change 

their operating times. Deferable loads can be shifted to other time slots, stopped, or 

restarted, allowing interruptions and time shifts – for example, washing machines, EVs, 

dishwashers, etc. Deferrable loads can reduce the peak load demand and are fit for DR 

programs. Non-deferrable loads must operate at their specified schedule – for example, 

lights, kitchen appliances, etc. Non-deferrable loads are generally unsuitable for DR 

programs (Arteconi et al., 2018; Li et al., 2017). Deferrable loads are also referred to as 

shiftable loads. 

Adjustable and non-adjustable loads are distinguished by their ability to adjust to a 

lower level of power consumption. Typically, adjustable loads are thermal loads and, 

therefore, even called thermostatically controlled loads or also referred to as sheddable 

loads. Examples are air conditioners, heat pumps, refrigerators, etc. Adjustable loads 

can reduce their total electricity consumption and are suitable for DR programs. Non-

adjustable loads are loads that cannot reduce their total electricity consumption, such 

as televisions and computers. Non-adjustable loads are not suitable for DR programs 

(Arteconi et al., 2018; Li et al., 2017). 

The appliances selected for DR programs vary depending on location and usage. For 

example, heat pumps are night storage heaters offer good DR potentials in Germany 

Müller et al. (2018), while dishwashers, tumble driers, and heat circulation pumps are 

used in a study by Gils (2014) to assess the DR potentials of 34 countries in Europe. 

Some authors have worked on residential DR in India and identified a few appliances 

for their studies. For example, Nair et al. (2014) included water heaters, water pumps, 

electric vehicles, washing machines, and vacuum cleaners, while Mohammad et al. 

(2019) included water heaters, air conditioners, washing machines, and clothes driers. 

Some studies have focused particularly on single appliances, such as ACs (Eapen et al., 
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2019; Srivastava et al., 2021) or a couple of them, such as ACs and refrigerators 

(McPherson et al., 2020). 

Among the appliances chosen for DR studies in India, a few appliances commonly used 

in Auroville are ACs, EVs, water heaters, refrigerators and washing machines. 

Therefore, the appliances selected for DR in this study are ACs, EVs, water heaters, 

refrigerators and washing machines. Figure 2.4 illustrates the identification process of 

household appliances for the DR program in Auroville. 

Figure 2.4 

Illustration of household appliances selection for the demand response program 

 

 

2.6 STEP 3: Approach for Deriving Load Profiles of the Residential Sector 

The next step after identifying the appliances suitable for DR is estimating the load 

profiles of each appliance so that their temporal availability is known, i.e., only the load 

that is switched on can be shedded or shifted. Therefore, this section focuses on 

literature that has estimated residential load profiles.  

Typically, the residential load profile models (RLPMs) can be categorized into bottom-

up and top-down models. Bottom-up RLPMs calculate individual building electricity 

consumption and extrapolate the results to a target area such as a city or country. On 

the other hand, top-down RLPMs derive relationships between the total electricity 

consumption and other macro-variables and then use those relations for modeling the 

results (Proedrou, 2021). Compared to the top-down models, bottom-up RLPMs 
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provide detailed results due to end-use appliance modelling. Therefore, several studies 

use this method. Firstly, the end-use appliances are identified, and load profiles for each 

appliance are generated. Next, all the load profiles are aggregated and in the final step, 

the model is validated by comparing the results to measured data (Proedrou, 2021). The 

load profile generation of individual appliances can be characterized according to the 

input type, i.e., time use survey (TUS) data or metered appliance time series data.  

TUSs provide detailed information about the duration and time at which people do 

various activities such as household work, food preparation, etc., and are recorded 

through residents maintaining personal dairies (Torriti, 2014). Since the type of 

equipment used depends on the occupant activity, a relation between activities and 

energy use is created to develop activity-specific profiles for each end-use appliance. 

For example, food preparation can be assigned to appliances such as hotplates, ovens, 

refrigerators, etc. Markov Chains are used to model the probability of transitioning from 

one state or activity to another (Johnson et al., 2014). Several studies have used TUSs 

to create synthetic appliance-wise residential load profiles. Pachanapan (2021) 

combined Thailand appliance ownership rates with TUS data from the UK to simulate 

high-resolution residential load profiles in Thailand. Irish national TUS activity data 

was used to create occupancy, appliance and lighting load profiles (Neu et al., 2015). 

Johnson et al. (2014) combined the occupant behavior model and residential load 

models to simulate the residential load profiles. The occupant behavior model is derived 

from the US TUS, and the residential appliance-wise load models are developed and 

validated. It requires several inputs such as ambient temperature, solar irradiation and 

thermal conductivities of building mass.  

Using metered appliance-wise time series data as the model input is another category 

of bottom-up RLPMs. The load profiles can either be from any organization’s database 

or from intrusive appliance monitoring through measurement campaigns when 

metering devices are connected to household appliances (Proedrou, 2021). Several 

authors monitored different household appliances during measurement campaigns. 

Besagni et al. (2020) measured the appliance-wise load profiles of Italian households, 

which were divided into several groups based on a sociodemographic analysis. For each 

group, the usage probabilities of several household appliances were derived from the 

time-series data. Gao et al. (2018) extracted similar days to the prediction day from 
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historical days. The operational probability of the 5 most similar days was averaged to 

obtain the operational probability for the prediction day for each appliance, which was 

multiplied by each appliance’s average power consumption. Clemente et al. (2021) 

generated appliance-wise load profiles for office buildings. However, their 

methodology can also be applied to residential buildings. The appliance-wise load 

profiles were generated based on measurement campaigns. The appliance stock N in 

the office building was estimated based on a survey and a load curve was randomly 

selected from the measurement data for N appliances, and those load curves were 

summed.  

While the above studies use either TUS data or metered time-series data to generate 

load profiles for the current day, a few additional factors must be considered while 

doing long-term forecasting. Lindberg et al. (2019) reviewed methodologies to do long-

term forecasting for hourly electricity demand in a regional scale. They recommended 

considering factors such as GDP growth, population growth, technological 

developments and appliance penetration. For constructing the domestic load profile for 

a future year, Müller et al. (2018) decomposed the domestic load into flexible and 

inflexible components. The flexible component consists of all appliances suitable for 

DR and the inflexible component consists of the remaining appliances. The inflexible 

component was simply scaled up using a scaling factor for the future year. The flexible 

component was constructed using a bottom-up approach considering the number of 

households, the market penetration rates of appliances, the average power consumption 

of each appliance type and the load shapes of each appliance (assuming that the load 

shape of each appliance remains the same in the future).  

In this study, monthly average daily load profiles for each appliance will be constructed 

for 2022 and 2030. Constructing an hourly load profile for each appliance for each day 

of the year in 2030 is beyond the scope of this study as the quality of data required for 

that purpose is not available. The study will consider factors such as future appliance 

ownership rates, population growth, efficiency improvements and the typical load 

shapes of each appliance for the long-term forecast. However, apart from the efficiency 

improvements in air conditioners, the technological developments for other appliances 

will not be considered as they are already mature technologies. An important 

assumption is that there is no emergence of technology for the services provided by the 
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selected appliances in the study. Furthermore, the effect of climate change on the future 

usage of appliances dependent on weather conditions, such as ACs and electric water 

heaters, is difficult to determine as it is complicated to do a long-term forecast for 

temperature and other weather factors in a specific region. Thus, this study does not 

consider the cooling demand change in the study region due to climate change in 2030. 

2.7 STEP 3: Theoretical Demand Response Potential Assessment 

Once the appliances suitable for DR are selected and their load profiles estimated, it is 

possible to assess the theoretical DR potential of each appliance. Many authors 

estimated the theoretical DR potential of various sectors, including the residential 

sector, to understand the potential of DR to increase the power system’s flexibility. This 

section provides an overview of these studies and concludes with the methodology 

common to most of them.  

Grein et al. (2011) assessed the theoretical DR potential of refrigeration systems in 

Germany. The theoretical potential was considered as the variable load of the 

refrigeration systems. To assess the potential of DR, the installed capacities of existing 

facilities were obtained from the administration of Mannheim city and used as the 

baseline. Since it was necessary to know when the refrigeration systems are available 

for load shifting, for example, the time of the day and the season of the year, they 

investigated the typical usage patterns of refrigeration systems from the literature. The 

theoretical DR potential was estimated at 4.2 GW, about 6% of the maximum power 

demand in the country. The DR potential was first estimated for Mannheim city and 

then extrapolated to the whole country. About 10% of the total theoretical potential in 

Mannheim city was from households or the residential sector.  

Babrowski et al. (2014) studied how load increases brought about by electric vehicles 

(EVs) could influence the national energy system in six European countries. EV load 

curves were extracted from mobility studies obtained from the literature. The DR 

potential of EVs was obtained by defining upper and lower bounds. The upper limit for 

the DR potential was derived from the total number of EVs at the charging facilities in 

a given hour. Since some vehicles must be charged daily due to high daily trip distances, 

it would not be easy to control their charging profiles, so they are excluded from 

contributing to the DR potential. So, the lower limit is the fraction of EVs that must not 

be charged daily to be available for DR when needed in a day. The study found that at 
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least 24% of the vehicles were available when charging was allowed at home 

(Babrowski et al., 2014). 

Gils (2014) also assessed the theoretical DR potential in Europe, including the 

residential sector. They concluded that overall, the minimum load reduction and 

increase potentials available in each hour of the year are 61 GW and 68 GW, 

respectively. The residential sector contributed to around 17% and 97% of the load 

reduction and increase potentials, respectively. The residential sector’s high 

contribution to the load increase potential was due to the restrictions considered in the 

industrial and commercial sectors for advancing loads (Gils, 2014).  

While the above studies are all located in Europe, Dranka et al. (2020) assessed the 

theoretical DR potential in a developing country, Brazil. Their methodology was based 

on Gils (2018) and Müller et al. (2018). The study found that although a large share of 

the potential was from the industrial sector, a lower but substantial share is found for 

both commercial and residential sectors. In 2017, the overall theoretical maximum 

hourly potential was assessed as 12.8 GW, and it is expected to almost double to 25.6 

GW in 2050. 

The methodology to estimate the theoretical potential is similar in all the above studies. 

Typically, the hourly electricity demand of each appliance is estimated. Then, a fraction 

of this hourly electricity demand is considered as the theoretical potential of that 

appliance. This fraction, which differs for each appliance, is termed the flexible 

component, according to Dranka et al. (2019). The percentage of flexible demand used 

by some authors is listed in Table 2.4. It can be noted that the values vary a lot. For 

example, in Germany, Stötzer et al. (2015) assumed the flexible demand for heat pumps 

and air conditioners as 2% and 4.8%, respectively, compared to Müller & Möst (2018) 

who assumed these values as 100% and 75% respectively. Another study developed 

scenarios for this flexible demand and assumed 33%, 67% and 100% for all the 

appliances selected for DR in each scenario (McPherson & Stoll, 2020). For electric 

vehicles, Babrowski et al. (2014) assumed that all the EV load is available for DR, and 

therefore the share of EV flexible demand is 100%. Since the flexible component of 

each appliance is specific to the location, climate, and usage of the residents, they may 

be different in the context of India.  
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Table 2.4 

Percentage of flexible demand for different appliances used in the literature 

Appliance 

Percentage of Flexible Demand (%) 

Stötzer et 

al. (2015) 

Müller & 

Möst 

(2018) 

McPherson 

& Stoll 

(2020) 

Babrowski et 

al. (2014) 

(Germany) (Germany) (India) 
(6 European 

countries) 

Refrigerator 18.5 - 33; 67; 100 - 

Washing machine 5.0 - - - 

Heat pump 2.0 100 - - 

Air conditioner 4.8 75 33; 67; 100 - 

Cold storage - 71 - - 

Warm water heating - 25 - - 

Night storage heater - 100 - - 

Air supply  - 50 - - 

Electric vehicle - - - 100 

 

2.8 STEP 4: Technical Demand Response Potential Assessment 

Theoretical DR potential is the absolute maximum potential possible and therefore 

doesn't consider the limitations of technical constraints. Therefore, some studies 

proceed further to derive the technical potential from the theoretical potential so that 

DR may be modelled in future power systems to assess the value it provides to the 

system. The following section provides an overview of the studies that assessed the 

technical DR potential. 

Stötzer et al. (2015) assessed the technical DR potential in the residential and 

commercial sectors in a typical medium-sized German city (500,000 citizens) in light 

of the current power system that faces high renewable energy penetration. The technical 

constraints used in the model include the start and end time of appliances, shifting time, 

minimum break required after shifting a load to start another DR event, and daily 

duration of the appliance usage. They considered the time-dependent patterns of 

different loads and optimized the load profile using the genetic algorithm to find the 

maximum demand shift. A shifting potential of 8 GW was determined for the residential 

and commercial sectors in the region in 2030 (Stötzer et al., 2015).   
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Due to similar reasons as in the above study, Kwon et al. (2014) assessed the technical 

DR potential in the residential, commercial and industrial sectors in Denmark. The 

EnergyPLAN model was used to simulate a 100% renewable energy scenario in 2050, 

with input parameters such as electricity production capacities of each technology, heat 

pump and vehicle to grid capacities, and the electricity demand for heating and other 

end uses in 2050. Then considering the technical constraints, such as the shifting time 

of each appliance, the technical DR potential was assessed for two timeframes. In the 

first time frame of 2 hours, the maximum hourly potential of flexible demand was 2.48 

GW and in the second time frame of 24 hours, it was 2.11 GW (Kwon et al., 2014).  

Alfaverh et al. (2021) proposed a DR approach for energy management for vehicle-to-

grid (V2G). The EV model is interfaced with Google Maps using MATLAB to estimate 

the driving distance, the battery energy needed for the trip, and each trip's arrival and 

departure times. Q-learning, a reinforcement learning (RL) strategy of machine 

learning, was used to model the EV charging and discharging schedules. RL strategies 

deal with taking actions or decisions in an environment to maximize rewards. Here the 

charging, delaying charging, discharging (V2G), etc., are the decisions made by the Q-

learning strategy. This model was applied to evaluate the effect of EV participation in 

peak shaving within a residential area of 100 households, with half of them owning an 

EV. The simulation results showed a 23% reduction in the morning peak load and a 

15% reduction in the evening peak load (Alfaverh et al., 2021).  

Müller et al. (2018) assessed the technical potential in Germany considering the 

technical restrictions such as shifting time, number and duration of DR events. Two 

scenarios were developed for 2035 and 2050 with different shares of renewable energy 

generation at 60% and 80%, respectively. The peak load with DR decreased by 3% for 

both scenarios, while the renewable energy curtailment reduced by 77% and 35% for 

2035 and 2050, respectively (Müller & Möst, 2018). 

To summarize, certain aspects considered to estimate the technical DR potential in the 

above studies are the shifting time and the number and duration of each DR event. 

However, it is important to note that there isn’t a general consensus among authors 

about the exact definition and factors considered in assessing the technical DR potential 

(Dranka & Ferreira, 2019). In this study, the technical DR potential is assessed by 

shifting a share of the demand from the residential appliances selected for DR from 
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peak hours to off-peak hours to minimize peak load. The details of the DR algorithm 

are provided in the next chapter. 

 

2.9 Microgrid Sizing 

Next, the modified load profile with DR is derived when the technical DR potential is 

assessed. The microgrid generation capacities for load profiles with and without DR 

will differ. So, for both cases, it is important to size the microgrid or to determine the 

installed capacities of each generation component in the microgrid. There are various 

approaches to sizing a microgrid; however, a few aspects can be considered as the main 

considerations for microgrid sizing problem formulation (Mathew et al., 2022). These 

include: 

• Consideration of load demand – Since the aim of sizing a microgrid is to meet 

the local demand, estimation of the load demand is essential to sizing the 

microgrid (Mathew et al., 2022). 

• Technical considerations – Technical considerations vary depending on the 

microgrid generation components. For example, for PV-based microgrids, these 

include rating of PV modules, tilt angle, PV efficiency, efficiency of converters, 

etc. (Mathew et al., 2022). 

• Economic considerations - A few metrics, such as total system cost (TSC), 

levelized cost of energy (LCOE), and net present value (NPV), are used to find 

the financial viability of the microgrid. While TSC includes the cost of 

installation, maintenance, operation and replacement (Mathew et al., 2022), 

LCOE is the ratio of TSC and total energy generated (El-Bidairi et al., 2018). 

NPV is the value of all future cash flows incurring during the lifetime of a 

project discounted to the present year (Corporate Finance Institute, 2022).  

• Reliability considerations – The microgrid’s reliability can be considered as its 

ability to meet the demand when grid power is unavailable. Loss of load 

probability (LLP) is the ratio of total energy deficiency and required demand in 

a particular period (Sarhan et al., 2019). 

 

For microgrid sizing or optimization, one or a few objective functions are typically 

optimized with a set of constraints imposed on them. Some objectives functions that 

are commonly considered are economic, reliability and environmental objectives. The 

economic objectives include minimizing TSC (Mathew et al., 2022), minimizing LCOE 
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(El-Bidairi et al., 2018) or maximizing NPV (Talent et al., 2018). The reliability 

objectives include minimizing LLP (Sarhan et al., 2019) and the environmental 

objectives include minimizing the GHG emissions from the microgrid (Mathew et al., 

2022). Some constraints that are commonly considered are renewable energy fraction 

in the energy produced (Bukar et al., 2019), boundaries of the sizes of generation 

components, and grid purchase allowed (Mathew et al., 2022). While there are various 

optimization approaches, such as linear programming, non-linear programming, 

artificial intelligence-based methods, etc. (Mathew et al., 2022), there are many 

software platforms that can be used to size the microgrids. Some software include are 

HOMER, RETScreen, HYBRID2, TRNSYS (Sinha et al., 2014), PLEXOS (Energy 

Exemplar, 2022), etc.  

Some studies assessing the financial viability of DR have used HOMER software to 

size microgrids that are partially sourced from renewable energy. HOMER is a tool to 

design microgrids with several renewable energy sources such as solar, wind, biomass, 

hydro, etc. and can even include sourcing energy from the grid. Kumar et al. (2019) 

optimized the size of a residential microgrid for a village in India with DR. They created 

different DR scenarios by varying the share of controllable load participating in DR. A 

financial analysis showed that the LCOE reduced by 2.5% in comparison to the scenario 

without DR. Montuori et al. (2014) also optimized the size of a microgrid that was 

powered by a biomass gasification power plant in the U.S. They generated DR scenarios 

according to the different incentive-based DR programs available in the U.S market and 

found that the avoided cost of energy was 33%. Yu et al. (2021) optimized the size of 

a residential microgrid in Iran using DR. The DR scenarios varied according to the 

price-based DR programs such as TOU and RTP. For the RTP DR program, the net 

present cost of the system was reduced by 16%. Shadman et al. (2020) assessed the 

feasibility of DR for peak shaving in a microgrid including battery storage and a natural 

gas generator in Texas, U.S. The TOU utility tariff structure was used as the DR 

program and the reduction in peak load from the scenario without DR was 19.7%. Ma 

et al. (2019) sized a residential microgrid with DR in Delhi, India, consisting of 100 

households. Assuming 40% of the load to be deferrable and participating in DR, they 

found that the LCOE reduced by 7%.  
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This study also uses the HOMER Pro software to size the microgrid in scenarios with 

and without DR. If any capacity benefits result from DR, the benefits will be estimated 

in monetary value. However, capacity benefits are not the only cost benefits of DR 

programs. To evaluate the financial feasibility of the DR program, it is necessary to 

account for other costs and benefits, which are discussed in the section below. 

2.10  Profits and Costs of Demand Response 

There are various profits and costs of DR programs to different stakeholders. Therefore, 

in this section, the different profits and costs to the utilities (microgrid operators in the 

case study context) and customers are identified from the literature and discussed.  

2.10.1 Types of Profits from Demand Response 

Implementing DR has cost reductions on the power system. Chen et al. (2022) 

developed a framework to quantify the economic and environmental benefits of 

implementing DR for peak load shaving in China. The hourly load curves were 

transformed into load duration curves, as shown in Figure 2.5. The cost savings were 

from saved installed capacity costs, avoided reserve costs, reduced generation costs, 

and saved transmission and carbon emissions costs. Among these, their study found 

that the avoided capacity costs were the major cost savings of DR implementation. 

Srivastava et al. (2021) and Heffner (2009) discussed the generation, transmission and 

distribution capacity deferral potential of DR. The deferral cost is the time value of the 

investment being deferred. Furthermore, combining DR in a system with high VRE 

penetration can reduce the VRE curtailment and save the associated costs (McPherson 

et al., 2020; Stötzer et al., 2015).  

Figure 2.5 

Illustration of demand response benefits from peak clipping 
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Note. Adapted from Chen et al. (2022). 

The cost benefits of DR are not only to the utilities. When the costs of the power system 

are reduced or avoided, these benefits can translate into customer bill savings since the 

customers share the cost of the power system. Customers can also get financial benefits 

by participating in incentive-based DR programs. Eapen et al. (2019) showed how DR 

for peak clipping could save organizations from penalty costs for exceeding contractual 

limits set by utilities. Price-based DR programs could also provide bill savings, as 

shown by Nair et al. (2014) – with TOU and RTP tariffs, the customer bill reduced 

respectively by 4.35% and 5.69% from flat tariff bills. 

2.10.2 Types of Costs from Demand Response 

Implementing DR programs also has associated costs. Based on the literature review, 

Woolf et al. (2013) identified different costs of DR programs. These include the costs 

of information technology and communication equipment; operations and maintenance 

(O&M); replacement marketing and outreach; labor or people cost; evaluation, 

measurement and verification of the DR program; financial incentives to the 

participants; participant value of lost service; and costs associated with increased 

energy consumption as a possible rebound effect. During a DR event, when there is a 

reduction in supply, the participant may incur productivity losses, i.e., some loss of 

comfort during an event targeting ACs. The participant value of lost service could be 

challenging to estimate since the loss has to be accounted for in terms of monetary value 

(Woolf et al., 2013). Despite these various costs, some studies simplify all the costs to 

only DR programs’ equipment acquisition and operating costs (Eldali et al., 2016; 

Xiang et al., 2020). 
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2.10.3 Discussion 

In the context of the community microgrid, the profits to the microgrid operators due 

to DR are 1) generation, storage and distribution capacity deferral, 2) reduction of VRE 

surplus exported to the grid (currently, this is not being credited to Auroville by the 

Tamil Nadu Generation and Distribution Corporation (TANGEDCO) (AVC, 2021a), 

and 3) reducing the penalty costs by not exceeding the contractual limits set by 

TANGEDCO. The costs to the microgrid operators due to DR are hardware cost, O&M, 

and financial incentives to participants. Currently, the appliances available in the 

market are not enabled with IoT. However, retrofits such as smart plugs can be used to 

control them remotely and are available in the market costing around 2000 INR per unit 

(Kiot, 2022). Apart from this, all the buildings in the residential community already 

have smart meters installed. The benefits to the residential community are the financial 

incentives provided by the microgrid operators, while the costs are the possible value 

of lost service. It is important to note that while all the benefits listed above are 

monetarily countable, other environmental benefits are not considered, such as reducing 

GHG emissions and improving resource efficiency by reducing generation capacities. 

2.11  Policies and Regulations for Demand Response in India – Time of Use 

Tariffs 

This section provides an overview of the status of the policies and regulations enabling 

DR in India. Besides a few pilots of DR programs in the C&I sectors in India and 

recently a pilot in the residential sector, DR hasn’t yet received considerable attention 

(Srivastava et al., 2021). However, DR exists in nascent stages in the form of TOU 

tariffs (price-based demand response) in almost all the Indian states for large 

commercial and industrial sectors. Kerala is the only state in India to follow TOU for 

domestic customers. Customers whose six-month average monthly consumption is 

above 500 kWh must follow the TOU structure (Talhar et al., 2020; KSEB, 2013). 

The TOU tariffs for the C&I sectors are typically similar for all states in India, with 

minor differences. The periods for peak hours, off-peak hours and normal periods vary 

from state to state. In some states, these periods are different in winter and summer, 

while in others, the periods are different for different consumer categories (Forum of 

Regulators, 2010). In Tamil Nadu, the time of use or time of day (ToD) tariff is 

mandatory for high-tension industrial customers. During the peak hours – 6:00 to 9:00 
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and 18:00 to 21:00 – the energy charges are 20% above the normal hours and during 

the off-peak hours – 22:00 to 5:00 – there is a 5% rebate on the energy charges (Tamil 

Nadu Electricity Regulatory Commission, 2013).  

While no policies currently aim at integrating DR programs in India, the Forum for 

Regulators recommended introducing TOU to the LT and domestic consumers phase-

wise. The suggested TOU structure is 3 slabs with normal, peak and off-peak periods, 

where the peak periods are priced 20-30% higher than normal tariffs and the off-peak 

periods are priced 15-20% lower than normal tariffs (Forum of Regulators, 2010). 

2.12  Summary 

In this chapter, many important concepts to understand DR were introduced. Next, a 

framework for assessing all categories of DR potentials was described. Based on this, 

a few major steps were highlighted and elaborated, such as the identification of 

appliances suitable for DR, assessment of the load profiles of appliances selected for 

DR, and theoretical and technical DR potential assessment methods. Finally, microgrid 

sizing, the various costs and benefits of DR programs, and the policies enabling DR in 

India were explored. The methodology of conducting this study will be explained in the 

next chapter. 
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CHAPTER 3 

METHODOLOGY 

This chapter provides the overall methodology of the study, as illustrated in Figure 3.1. 

First, using several input data such as distribution transformer (DT), smart plugs and 

survey data, the appliance-wise (air conditioner, water heater, refrigerator, washing 

machine and electric vehicle) and DT load profiles are estimated for 2022. The 

appliance-wise load profiles are verified using aggregated smart meter data of the 

residential sector. Once verified, based on population growth, future appliance 

ownership rates and appliance efficiency improvements, the appliance-wise and DT 

load profiles are projected for 2030 (specific objective (SO) 1). Next, the demand 

response algorithm is applied to the DT load profile and based on the customer 

participation factor and appliance-specific technical factor (which will be explained 

later), a few DR scenarios are created (SO 2). Finally, the microgrid is sized with cost 

minimization as the objective function for the base case scenario without DR and for 

the three DR scenarios. A financial analysis is conducted to compare the scenarios with 

and without DR (SO 3). Each specific objective’s detailed methodology is provided in 

Sections 3.1 - 3.3. 

Figure 3.1: 

The overall methodology of the study 

 

3.1 Distribution Transformer and Appliance-wise Load Profiles for 2030 
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This section describes the detailed methodology for specific objective 1. It starts with 

an overview of the whole methodology and then details all steps in the process. The 

case study region is Auroville, an international township in Tamil Nadu, South India. 

The geographical and sectoral scope of the study includes all residential buildings 

connected to the distribution transformer (DT) in Auroville with the highest rooftop 

solar PV penetration, as illustrated in Figure 3.2. The appliances suitable for DR are 

ACs, e-cycles, e-scooters, washing machines, refrigerators, and electric water heaters 

(EWH) and are termed as the flexible component of the DT demand. The rest of the DT 

demand, including other residential and sectoral loads, is termed as the inflexible 

component. Figure 3.3 shows how the flexible and inflexible components of the DT 

demand are projected for 2030. While the inflexible component’s demand in 2030 is 

projected by scaling the current demand according to the historical growth rate factor, 

the flexible component’s demand is projected according to the specific development of 

each appliance.   

Figure 3.2: 

Geographical and sectoral scope of the study 

 

Figure 3.3: 

The overall methodology of specific objective 1  
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Note: Adapted from Müller & Möst (2018). 

Figure 3.4 shows the overall methodology to estimate the current and future load 

profiles of the flexible component of the DT demand. From the smart plug and survey 

data, the load shapes of ACs, EWHs, refrigerators, EVs, and washing machines are 

generated. Then, from the appliance ownership rates determined from the survey data, 

the current aggregated appliance-wise load profiles – flexible component – are obtained 

and verified using the residential sector aggregated smart meter data. Then, based on 

the appliance-specific developments such as future appliance ownership rates, energy 

efficiency improvements and population growth, the appliance-wise load profiles are 

projected for 2030.  

Figure 3.4: 

Methodology to estimate the current and future demand of the flexible component of 

the distribution transformer 
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Next, the inflexible component of the DT demand is estimated. The current inflexible 

component of the DT demand is obtained as the difference between the current DT load 

profile and the flexible component’s load profile. It is then scaled up to 2030 based on 

the historical electricity consumption growth rate factor. Finally, the future flexible and 

inflexible components of the DT demand are summed to obtain the DT load profiles in 

2030.  

The following sections will describe the data sources collected in this study, the 

methodology of load profile construction for each appliance type, the current and future 

appliance stock derivation in the study region, the construction of current and future 

aggregated residential load profile and their validation, and the construction of DT load 

profile in 2030. 

3.1.1 Data Sources 

The input data to carry out the study come from two sources - time series power data 

during measurement campaigns and a survey conducted in Auroville. The following 

section details the methodology used to obtain these data sources. 

 Metered power consumption data acquisition 

Several types of power consumption metered data were monitored during the study’s 

campaign period or were obtained from Auroville Electrical Service (AVES), an 

electricity service provider in Auroville. These include appliance-wise smart plug data, 

building-wise smart meter data, aggregate rooftop solar PV generation and DT demand 
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data. Smart plugs were used to obtain the minute-wise power consumption data of ACs, 

EWHs, and refrigerators during the measurement campaigns ranging from 4 weeks to 

12 months. Due to several issues, such as privacy concerns of residents, lack of 24/7 

wi-fi, and physical restrictions to place smart meters, a restricted number and type of 

appliances were monitored. Smart meters were already installed in all the residential 

buildings by AVES. However, only the aggregate residential demand data was provided 

by AVES to maintain the privacy of individual households. AVES also provided 

rooftop solar PV generation and DT demand database. The data range, resolution and 

measurement sources are provided in Table 3.1. 

Table 3.1:  

Different types of metered data and their characteristics 

Data type Range Resolution Source 

Smart plug – AC 4 to 12 months 1 minute Own, 10 metered 

appliances 

Smart plug – EWH 3 months 1 minute Own, 3 metered 

appliances 

Smart plug – 

refrigerators 

4 weeks 1 minute Own, 3 metered 

appliances 

Smart meter 6 months 30 minutes AVES 

Solar PV 

generation 

6 months 15 minutes AVES 

Distribution 

transformer 

2 years 1 hour AVES 

 

 Survey data acquisition 

The second type of data source in this study is the survey conducted in Auroville. It 

aimed to estimate the current and future appliance stocks of all appliances and the 

appliance usage patterns of the appliance types that were not metered, i.e., washing 

machines and EVs – e-cycles and e-scooters. The respondents were asked to select all 

the appliances they use for obtaining the current appliance stock. For future appliance 

stock estimation, they were asked whether they were likely to purchase an appliance in 

the next 5 to 8 years, and the responses consisted of “yes”, “maybe,” and “no”. Since 
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EWHs were monitored only during the monsoon months (when the usage is the most), 

additional questions were asked regarding their frequency of usage per week during the 

monsoon and the rest of the year. The typical usage hours in a day and the number of 

washing rounds done per week were included for washing machines. For EVs, the 

number of users per vehicle, the typical distance traveled in a day, and the charging 

hours were asked. Furthermore, the duration of a typical charge (in hours) and the 

charging frequency per week were asked to verify the typical distance traveled in a day 

since that is the most important input for the charging profiles.  

3.1.2 Load Profile Extraction Methodology 

The two data sources are used to extract typical appliance-wise daily average load 

profiles. While the meter data is used to construct AC, EWH and refrigerator load 

curves, the survey data is used for EV and washing machine load curves. The following 

sections describe the load profile extraction methodology for each appliance.  

 Load profile extraction methodology from metered data 

There are several steps to process the power consumption data so that it may be used to 

generate load profiles. In the first step, data was obtained from campaigns or AVES. In 

the second step, the data was pre-processed, i.e., data cleaning, preparation and outlier 

removal. In the third step, the missing data was imputed when significant and deleted 

when negligible. Smart plug data was imputed since significant missing data resulted 

from unstable wi-fi connections and power outages. Missing data imputation techniques 

depend on the gap size of missing data (Cho et al., 2020; Luo et al., 2022; Pazhoohesh 

et al., 2021). The linear interpolation technique performs best for small gap sizes or gap 

sizes less than 2 hours(Cho et al., 2020).  Since power consumption time series has 

periodicity, several studies dealing with such data use copy paste imputation (CPI) 

technique, where missing data blocks are copied from the previous week’s data and 

pasted into the gaps (Debnath et al., 2020; Weber et al., 2021). So, the CPI technique 

was used for gap sizes greater than 2 hours. In the fourth step, data was sampled at a 1-

hour sampling rate. In the final step of data preparation, the AC consumption data was 

normalized to one ton of refrigeration, and the data was ready to be processed to 

generate load profiles. Water heater and refrigerator data were not normalized since 

they represented the typical capacities in the region (2 kW and 120 W, respectively).  
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Once the data was processed, it was used to derive the monthly average daily load 

profiles. Since several appliances for the same appliance type were metered, average 

demand data for each type of appliance was derived by doing a point-wise average of 

all appliances of the same type. Finally, monthly average daily load profiles were 

derived for each appliance type – AC, refrigerator, and EWH. One year’s data was 

available for ACs. Therefore, monthly average daily load profiles for an entire year 

were obtained directly. Refrigerators were monitored for only 4 weeks. However, since 

their usage is not dependent on the season and can be assumed to be representative of 

the whole year, the same daily average load profile was used for all the months in the 

year (Müller & Möst, 2018). This is not the case with EWH, whose usage is weather 

dependent. The measurement campaign for EWHs lasted during the monsoon months 

of the year in Auroville; hence their usage was maximum. Therefore, a capacity factor 

(CF) was introduced to extend the load profiles of EWHs for the rest of the year. CF is 

dependent on the frequency of EWH usage and is calculated as in Equation 3.1, where 

n is the number of respondents and Fr is the number of days in a week hot water for 

bathing is used by respondent r. For example, if all respondents use hot water daily 

during the monsoon months, CF is 1. If everyone uses hot water only twice a week, the 

CF is 2/7 or 28.6%. CF was then multiplied by the average EWH load profile obtained 

for the monsoon months to extend it to the rest of the year. 

Capacity Factor (CF) = 
∑ 𝐹𝑟

𝑛
𝑟=1

7
,                                                                Equation 3.1 

 

 Load profile extraction methodology from survey data 

For the remaining appliances, i.e., EVs and washing machines, the load profiles were 

generated based on the usage pattern from the survey data. Since their usage is not 

dependent on temperature or seasons, a single load curve representing a typical day in 

a year was derived. For EVs, cumulative distribution functions of the daily travelled 

distance and charging starting hour in a day were obtained from the survey. EV 

specifications such as battery capacity; battery charging and discharging efficiency; 

charger input current and voltage; charger efficiency and vehicle fuel efficiency 

(km/kWh) were obtained from an EV rental and sales shop in Auroville. Monte Carlo 

simulation was done to pick a specific charging starting hour and distance travelled in 

a day for one iteration. The charging duration was estimated from Equation 3.2. The 
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simulation was run for several iterations, i.e., 200, and the typical charging profile for 

EVs was derived as illustrated in the flowchart in  

Figure 3.5. 

Charging duration = 

Battery capacity

Vehicle fuel efficiency
×distance travelled in a day

Depth of discharge × roundtrip efficiency
 / (Charger input current 

x voltage)                       Equation 3.2 

 

Figure 3.5:  

Flow chart to derive charging load profiles of electric vehicles 

 

For washing machines, the methodology of deriving load profiles is similar to that of 

EVs. The cumulative distribution function for the starting hours for washing machine 

usage was also derived from the survey. The typical duration and washing machine 

power consumption ranges were obtained from secondary data. These values were 

randomly chosen in each iteration.  

3.1.3 Appliance Stock in 2022 and 2030 

The load profile construction methodology for each appliance type is discussed above. 

The next essential input to simulate the current and future appliance-wise residential 
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load profiles is the current and future appliance stock in the study region. For the current 

appliance stock, the residential building caretakers in the study region were approached 

to find values from their inventory, and when this direct method was not possible, the 

appliance stock was derived from the survey conducted in Auroville.  

For future appliance stock, the current appliance stock is expected to remain till 2030. 

The new appliance stock by 2030 is due to two factors – the existing population 

installing new appliances and population growth. For the existing population, the future 

appliance ownership rates were derived from the survey conducted in Auroville. The 

respondents were asked whether they owned an appliance type currently (“yes” or “no”) 

and whether they were likely to install another one in the next 5 to 8 years (“yes”, 

“maybe”, or “no”). The ownership rates were derived per household based on these two 

questions. For additional appliance stock from population growth, the historical 

population of Auroville was obtained from Auroville Archives, and the compound 

annual growth rate (CAGR) was estimated. The future population in the study region 

was obtained by using the CAGR. The appliance stock in the future due to population 

growth was calculated similarly to the existing population purchasing new appliances. 

The future stock for refrigerators and washing machines is expected from only 

population growth as almost all households already have them. 

Unlike the current appliance stock, there can be variability in predicting future 

appliance stock. Thus, three scenarios were considered since while some respondents 

were surely going to purchase an appliance in the future, some “might” install one. In 

scenario A (maybe 0%), all those who might install one in the future are assumed not 

to install one in reality. In scenario B (maybe 50%), only 50% of those who might install 

one in the future are assumed to install one in reality. In scenario C (maybe 100%), all 

those who might install one in the future are assumed to install one in reality.  Of course, 

all the respondents who will (“yes”) purchase an appliance in the future are expected to 

do so in reality in all the scenarios. Furthermore, when available, secondary data from 

the literature was used to predict the future appliance stock in the study region in 2030 

to compare the values to the scenario results obtained from the survey. 

 

3.1.4 Current and Future Residential Appliance-wise Load Profile Simulation and 

Validation 
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Once the individual appliances’ load profiles and their respective appliance stocks were 

derived, they were used to obtain the current and future residential appliance-wise 

monthly average daily load profiles – the flexible component of the DT demand. The 

appliance load profiles derived from the metered data were multiplied by their 

respective appliance stock for load aggregation. The appliance load profiles derived 

from the survey data were aggregated by appliance type by setting the appliance stock 

input to their respective values. Finally, the load profiles of all appliance types were 

aggregated to obtain the current and future residential load profiles. For the new air 

conditioner stock to be purchased by 2030, the load profiles were scaled down based 

on the efficiency improvement projections. 

The simulated monthly average daily load profiles were compared with smart meter 

aggregated residential active power data to validate the results. Since the latter data was 

only measured from June to November 2022, only the simulated load profiles for the 

respective months were compared. Furthermore, the simulated load profiles don’t 

consider other non-controllable appliances such as lights, fans, etc. and thus are not 

expected to be the same as the smart meter aggregated residential active power data. 

The validation is only possible to a certain extent and is a visual method. 

3.1.5 Distribution Transformer Load Profile in 2030 

The previous sections detailed all the steps to estimate the flexible component of the 

DT demand in 2022 and 2030. Next, if the inflexible component of the DT demand is 

estimated, the DT load profile in 2030 can be generated. The inflexible component in 

2022 is obtained by subtracting the flexible component demand in 2022 from the DT 

demand in 2022. Next, the historical compound annual growth rate of electricity 

consumption in Auroville was used to scale this demand to 2030. Finally, the flexible 

and inflexible components of the DT demand in 2030 are summed to obtain the DT 

load profile in 2030.  

To summarize, this section provided the detailed methodology of the data sources 

required for specific objective 1, the load profile extraction methodology for each 

appliance selected for DR, the appliance stock estimation for 2022 and 2030, the 

construction of aggregated appliance-wise load profiles (the flexible component of the 

DT demand), and finally the DT load profiles in 2030. Thus, the appliance-wise load 
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profiles and the DT load profiles for 2030 are now available to use as inputs in the next 

specific objective of this study. 

3.2 Modified Distribution Transformer Load Profiles with Demand Response 

This section describes the detailed methodology for specific objective 2 and its 

overview is illustrated in Figure 3.6. Firstly, a couple of factors, such as appliance-

specific technical factor and customer participation factor are estimated to determine 

the share of the demand of the appliances selected for DR that is available for DR, and 

is termed appliance DR factor. This value represents that not all the load from the 

appliances selected for DR is available or participates in DR. Then, the share of 

appliance demand according to its DR factor is curtailed/shifted from the peak hours to 

the off-peak hours. The following sections will describe the factors considered to 

estimate appliance DR factors and the DR algorithm to shift load from peak to off-peak 

hours to estimate the technical DR potential. 

Figure 3.6: 

The overall methodology of specific objective 2 
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3.2.1 Appliance Demand Response Factors 

This section describes appliance DR factors. The flexible component of the DT demand 

is from controllable or non-critical loads. Thus, it can be considered as the theoretical 

DR potential according to the definition provided in section 2.2.1. However, it is 

necessary to refine this potential further as not all the demand from the appliances 

selected for DR is available to participate in DR. Firstly, all customers will not 

participate in the DR of all appliances; therefore the customer participation factor has 

to be accounted for each appliance. Secondly, even if a customer participates in the DR 

program of an appliance, all of the appliance’s demand must not be available to 

participate in DR to ensure the customer’s comfort. For example, the air conditioner 

must not be curtailed for 2 hours continuously so that the customer doesn’t lose their 

thermal comfort. Furthermore, load shifting must occur within the same day. These 



 

  48 

aspects, such as the duration of the DR event and shifting time, are considered in the 

appliance-specific technical factors. Thus, the appliance DR factor is the product of 

customer participation and appliance-specific technical factors. 

This study develops different DR scenarios based on the appliances selected for DR, 

the customer participation factor, and whether or not the current stock is considered for 

DR, as described in Table 3.2. In DR Maximum, DR Medium and DR Minimum 

scenarios, all appliance types and existing and future appliance stock are assumed to 

participate in DR. Only the share of customers participating in DR varies. As electric 

vehicles’ and air conditioners’ share in the residential demand is high, a scenario with 

only these two appliances is created. The last scenario, DR New App, is the scenario 

where only the new appliances to be bought by 2030 are considered to participate in the 

DR program and are enabled with smart features for DR implementation. This scenario 

is interesting due to zero investments in hardware costs for DR implementation in 2030, 

as the new appliances are already assumed to be enabled with smart features. 

Table 3.2: 

Assumptions of different DR scenarios 

Scenario Name 

Appliances 

selected for 

DR 

Customer 

Participation 

Current 

appliance 

stock 

Future 

appliance 

stock 

DR Maximum All High Yes Yes 

DR Medium All Medium Yes Yes 

DR Minimum All Low Yes Yes 

DR EV&AC ACs and EVs Medium Yes Yes 

DR New App All High No Yes 

 

3.2.2 Algorithm for Obtaining Load Profiles with Demand Response 

The previous section described how to obtain the load available for participation in the 

DR program from each appliance type using its respective appliance DR factor. This 

section will provide the algorithm to implement DR on the DT monthly average daily 

load profiles and the algorithm is shown in Figure 3.7. First, the peak load of each 

month is checked to determine whether or not DR has to be implemented in that month. 

Next, for shiftable appliances - electric vehicles, washing machines and electric storage 

water heaters, a share of their demand is reduced in the peak hours and shifted evenly 

to the off-peak hours based on their respective appliance DR factor. For sheddable 
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appliances - air conditioners and refrigerators, a share of their demand is curtailed 

during the peak hour based on their respective appliance DR factor. 

Figure 3.7 

Algorithm to obtain monthly average daily load profiles of DT with DR 

 

First, if the peak load of the monthly average daily net load profile of DT is greater than 

80% of the system peak load, DR is applied. The baseload B for each month is the 

average DT load Dt during the night hours – 12 am to 7 am (Equation 3.3). The hours 

in a day when the load is 10% greater than the baseload and 10% less than the baseload 

are considered peak and valley periods, respectively and denoted by the sets Ph and Vh, 

respectively (Equations 3.4 & 3.5).  

B = ∑
𝐷𝑡

8

7

𝑡=0
                         Equation 3.3  

Ph = {t | Dt > 1.1 x B}                                                       Equation 3.4 

Vh = {t | Dt < 0.9 x B}                                                       Equation 3.5 

Next, for each shiftable appliance, DRapp,t denotes the load reduction from DR. The 

appliance load reduction in the peak period is obtained by multiplying the appliance’s 

demand Dapp,t with its DR factor fapp (Equation 3.6). The appliance’s load increase in 

the valley period is obtained by dividing the sum of the energy consumption reduction 

during the peak period E_DR (Equation 3.7) with the number of valley hours in a day 

n(Vh) (Equation 3.8).  
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DRapp, t = Dapp, t x fapp (for t ϵ Ph)                          Equation 3.6 

E_DR = ∑ DRapp,t
t ∈ Pḣ

                  Equation 3.7

  

DRapp, t = - 
E_DR

n(Vh)
  (for t ϵ Vh)                             Equation 3.8

  

The DT demand after DR from nshift number of shiftable appliances Dshift_DRt is the 

difference between the initial DT demand and the sum of load reduction from all 

shiftable appliances (Equation 3.9). 

Dshift_DRt = Dt − ∑ DRapp,t

nshift

app=1
              Equation 3.9 

 

Now, DR from sheddable loads is considered. Let the DT demand from demand 

response D_DR be equal to Dshift_DRt initially (Equation 3.10). For each appliance that 

can shed its load, the peak hour hmax is determined where the D_DR load is the 

maximum. The load is curtailed according to the appliance DR factor at that peak hour, 

and D_DR is modified for that peak hour (Equation 3.11). This process is repeated until 

all sheddable loads are considered and finally, the DT demand from demand response 

D_DR is obtained.  

 

D_DR = Dshift_DRt                      Equation 3.10 

For app in nshed: 

        hmax = t for max(D_DRt) 

        D_DRhmax = D_DRhmax - (Dapp,hmax x fapp)                 Equation 3.11 

 

To note that for electric water heaters, only the storage type is considered for DR. 

Storage water heaters can only store hot water effectively for a few hours n. Thus, a 

constraint is considered on Ph and Vh such that only n hours before the peak hour that 

coincide with the unconstrained peak period are considered as Ph (Equation 3.13) and 

2n to n hours before the peak hour that coincide with the unconstrained valley period 

are considered as Vh (Equation 3.14), as illustrated in Figure 3.8. 

tmax = t for max(Dt)                                                                                     Equation 3.12 

Ph = {t | Dt > 1.1 x B} ∩ [tmax – n + 1, tmax]              Equation 3.13 

Vh = {t | Dt < 0.9 x B} ∩ [tmax – 2n + 1, tmax – n]            Equation 3.14 
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Furthermore, to model the losses from storing the hot water for n hours, Equation 3.8 

is modified to increase the demand by a small factor. 

 

Figure 3.8: 

Illustration of constraints on peak and valley periods for a storage water heater with 

n = 4 hours 

 

To summarize, this section provided the detailed methodology to generate DT monthly 

average daily load profiles after applying DR. This is based on customer participation 

(varies according to the DR scenarios) and appliance-specific technical factors.  Their 

product is the appliance DR factor and thus, accounts for the share of customers 

participating in the DR program and ensures customer comfort. The technical DR 

potential is the difference between the system peak load with and without DR. The 

modified DT load profiles from each DR scenario are now available to use as inputs in 

the next specific objective of this study.  

3.3 Microgrid Sizing and Financial Evaluation  

As a final step in this study, the microgrid is sized in the HOMER Pro software for the 

different DR scenarios’ modified DT load profiles generated in the previous section. 

Then, a financial analysis is conducted and the different scenarios with and without DR 
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are compared. The objective function, constraints and performance metrics for financial 

evaluation are discussed in the subsequent sections. 

3.3.1 Objective Function 

The objective function for sizing the microgrid is minimizing the net present cost 

(NPC), which is the discounted value of all the future cash inflows and outflows to the 

present year, as given in Equation 3.15. 

NPC = CCp + RCp + O&MCp + FCp + EPp + GCp - SVp - GSRp              Equation 3.15 

Where, 

CCp = present value of capital costs 

RCp = present value of replacement costs 

O&MCp = present value of operations and maintenance cost 

FCp = present value of fuel costs 

EPp = present value of emission penalties 

GCp = present value of grid costs 

SVp = present value of salvage value 

GSRp = present value of grid sales revenue (HOMER Pro, 2023). 

Salvage value is the value of a component at the end of the project’s lifetime. It is 

proportional to the component’s remaining life at the end of the project’s lifetime and 

its replacement cost (HOMER Pro, 2023). 

3.3.2 Constraints 

The constraints that are considered in the software are power balance, boundaries of 

energy sources, minimum renewable fraction FRE, and maximum net grid purchases. 

The power balance ensures the demand is always met (Equation 3.16). The boundaries 

of energy sources ensure that the system always operates under the boundaries of each 

component, such as renewable energy technologies, grid, and battery (Equation 3.17 – 

3.19). The minimum renewable fraction is the minimum fraction of energy supplied to 

the load in a year that is sourced from renewable energy (Equation 3.20). The maximum 

net grid purchases are the maximum net energy purchased or imported from the grid 

annually (Equation 3.21) (HOMER Pro, 2023). 
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PRE, t + Pg, t + PBESS, t = PD, t                       Equation 3.16 

PRE, min  ≤ PRE, t ≤ PRE, max                                                                           Equation 3.17 

Pg, min  ≤ Pg, t ≤ Pg, max                                                                                                                          Equation 3.18 

SoCmin ≤ SoC ≤ SoCmax                                                                            Equation 3.19 

FRE = 1 – Enon-RE/Eserved                                                                                                                     Equation 3.20 

Eimport, grid – Eexport, grid ≤ 0                                                                          Equation 3.21 

Where, 

PRE, t = power generated by renewable energy sources 

Pg, t = power imported from the grid 

PBESS, t = power from the battery 

PD, t = demand  

PRE, min = minimum power generated by renewable energy sources 

PRE, max = maximum power generated by renewable energy sources 

Pg, min = minimum power imported from the grid 

Pg, max = maximum power imported from the grid 

SoCmin = minimum state of charge of battery storage 

SoC = state of charge of battery storage  

SoCmax = maximum state of charge of battery storage 

Enon-RE = non-renewable energy produced annually 

Eserved = total energy serving load and grid exports annually 

Eimport, grid = energy imported from the grid annually  

Eexport, grid = energy exported to the grid annually. 

According to the objective of this study, the maximum net grid purchases are set to 

zero. Next, the minimum renewable fraction constraint is used to ensure that only a 

small share of the load is met by grid imports and to encourage renewable energy self-

consumption in the microgrid. 

3.3.3 Performance Metrics for Financial Evaluation 

The performance metrics for financial evaluation that will be used in this study to 

compare the outcomes of each scenario are NPC, levelized cost of energy (LCOE), 

capital expenditure (CAPEX), operating expenditure (OPEX), avoided cost, and return 

on investment (ROI). LCOE is the ratio of the annualized cost of generating electricity 

to the electrical load served, as shown in (Equation 3.22) (HOMER Pro, 2023). Avoided 
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cost is the difference between the LCOE of the scenario of interest to the base case 

(Montuori et al., 2014). ROI is a measure to understand the profitability of an 

investment. It is the ratio of the difference between the final and initial values of 

investment to the initial value of investment (Equation 3.24) (Beattie, 2022). 

LCOE = 

i(1+i)n

(1+i)n−1
×NPC

Eserved
                                                    Equation 3.22 

 

Where, 

i = real discount rate 

n = project lifetime 

NPC = total net present cost 

Eserved = total energy serving load and grid exports annually. 

The real discount rate is calculated from the nominal discount rate i′ and inflation rate 

according to (): 

ⅈ =
i′−f

1+f
                                                                                                        Equation 3.23 

 

ROI = 
Final value of investment−Initial value of investment

Initial value of investment
                                Equation 3.24 

 

To summarize, in this section, the objective function and constraints to size the 

microgrid in HOMER Pro software were discussed. The several performance metrics 

to compare the outcomes of each DR scenario were also described. A sensitivity 

analysis will be done on the capital cost of the microgrid and DR hardware equipment 

as it is difficult to project their costs in 2030.  

3.4 Summary 

This chapter provided the detailed methodology of the three specific objectives of this 

study. In Section 3.1, the methodology to project the load profiles of DT and all 

appliances selected for DR was discussed. Section 3.2 described the algorithm to 

modify the DT load profiles with DR based on the appliance DR factor. The technical 

potential is the difference between the system peak with and without DR. Finally, 

Section 3.3 provided the objective function and constraints considered in the microgrid 
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sizing software, HOMER Pro, and the several performance metrics used in this study 

for financial analysis to compare the outcomes of each DR scenario. The next chapter 

will provide the results of this study. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

This chapter provides the results of this study.  

4.1 Distribution Transformer and Appliance-wise Load Profiles for 2030 

This section presents the results of specific objective 1 – DT and appliance-wise 

monthly average daily load profiles for 2030. The survey results, typical load profiles 

for each appliance, appliance stocks for 2022 and 2023, yearly average appliance-wise 

residential load profiles for 2022 and 2030, and DT monthly average daily load profiles 

for 2030 are discussed in the subsequent sections.  

4.1.1 Survey Description 

The survey conducted in Auroville was divided into two parts. The first part consisted 

of the general household appliances such as ACs, EWHs, and washing machines, 

referred to as the ‘general survey’ in this study, while the second part consisted of only 

EVs and is referred to as the ‘EV survey’. The general survey was conducted in the 

township community dining space and mainly aimed to find the current and future 

appliance stocks and some appliance usage patterns. The EV survey was conducted at 

the EV rental and sales shop in Auroville. Specific questions related to deriving the EV 

charging profile, as mentioned in section 3.1.1.2, were asked of the customers who 

visited the shop for EV servicing. The respondents answered all the questions directly, 

and an assistant was provided in case any respondent needed the question to be 

rephrased (the survey questionnaire is provided in Appendix D). Eighty-seven 

responses were recorded for the general survey, representing around 10% of households 

in Auroville (assuming 4 residents per household) and 71 responses for the EV survey, 

representing around 11% of EVs in Auroville. This has a sample error of less than 10%, 

according to Yamane’s method of sample size determination (Chaokromthong & 

Sintao, 2021).  

4.1.2 Monthly Average Daily Load Profiles of Domestic Appliances 

This section provides the typical monthly average daily load profiles of the appliances 

selected for DR. Monthly average daily load profiles for ACs and EWHs are shown in 

Figure 4.1 and Figure 4.2, respectively. Since the usage of both these appliances is 
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weather-dependent, monthly average load profiles for the whole year were derived. The 

overall pattern for ACs is such that the usage peaks between 6 pm and 8 pm and is the 

lowest between 3 am and 12 pm. May, June and July are the months with the highest 

usage coinciding with the hottest months in Auroville. Similarly, December, January 

and February are the months with the lowest usage, corresponding to the coolest months 

in the region. EWHs were not monitored for an entire year, so only the monsoon 

months’ average daily load profiles were available. The CF for non-monsoon months 

(January to August) was found to be 46% from the survey data. Thus, a daily average 

load profile for all the non-monsoon months was used. Hot water for showers is mainly 

used during the mornings and peaks around 8 am, while there is a smaller peak in the 

evenings at around 7 pm. 

Figure 4.1:  

Typical air conditioner (single unit) monthly average daily load profiles 

 

 

Figure 4.2:  

Typical electric water heater (single unit) monthly average daily load profiles 
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While the usage of ACs and EWHs is weather dependent, it is not the case for EVs, 

refrigerators and washing machines. Thus, yearly average daily load profiles were 

derived and shown in Figure 4.3 and Figure 4.4. Most EV charging happens during the 

evenings and peaks around 9 pm. The refrigerator load is constant throughout the day 

and peaks between 6 pm and 8 pm. Washing machines are mainly used in the mornings 

and the maximum demand is around 8 am. 

Figure 4.3:  

Typical electric scooter (single unit) yearly average daily load profile 

 

Figure 4.4:  

Typical electric cycle, refrigerator and washing machine (single units) yearly average 

daily load profiles 
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4.1.3 Appliance Ownership Rates in the Study Region in 2022 and 2030 

This section provides the results of the appliance ownership rates in the study region in 

2022 and 2030 using the survey conducted in Auroville. Different scenarios for 

appliance ownership rates in 2030 were created and compared with secondary data from 

the literature. The current appliance ownership rate was obtained by asking the 

respondents whether or not they own the appliances listed in Table 4.1. The likelihood 

of buying an appliance, i.e., AC, EWH and EV, in the next 5 to 8 years was assessed 

using their confidence in buying the appliance as provided in Table 4.2. Different rates 

were derived based on whether the respondent already owned the appliance or not and 

whether they responded “yes” or “maybe”.  

Table 4.1: 

Auroville-wide appliance ownership rates in 2022  

Appliance 

2022 appliance 

ownership rate 

(Auroville-wide) 

Air conditioner 0.31 

E-cycle / e-scooter 0.39 

Water heater 0.49 

Refrigerator 0.89 

Washing machine 

(decentralized) 
0.60 

 

Table 4.2:  

Likelihood of buying appliances in the future based on those who currently own or 

don’t own the appliance 
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Current ownership of appliance (yes/no) 
Appliance purchase by 2030 (%) 

Yes Maybe 

Air conditioner 
Yes 11.1 11.1 

No 10.0 8.3 

Electric water heater 
Yes 16.3 7.0 

No 2.3 9.1 

Electric vehicle 

Yes: e-cycle 30.4 0.0 

Yes: e-scooter 20.0 0.0 

No 41.5 18.9 

 

However, the general survey was Auroville-wide, whereas the scope of the study is 

only a few residential buildings connected to one DT, as mentioned in Section 3.1. In 

the study region, there were three apartments consisting of 83 households and 17 

individual households, totaling 100 households. Therefore, for first-hand data, instead 

of using Auroville-wide survey results, the caretakers of the apartments were 

approached to get the number of residents and some appliance ownership rates. Among 

the 17 individual households, the appliance ownership rates from the general survey 

were used for those that could not be approached. Accordingly, the current appliance 

ownership rates for the study region are provided in Table 4.3. Based on the current 

ownership rates and the projected rates from Table 4.2 for the existing and new 

population in the study region by 2030, scenario-wise appliance ownership rates were 

derived for 2030 in Table 4.3. 

 

Table 4.3:  

Appliance ownership rates in 2022 and 2030 in the study region 

Appliance 

Appliance 

ownership 

rate 2022 

(study 

region) 

Appliance ownership rate 2030 (study region) 

Scenario 

A 

(maybe 

0%) 

Scenario B 

(maybe 

50%) 

Scenario C 

(maybe 

100%) 

Selected 

Air conditioner 0.22 0.34 0.39 0.43 0.39 

E-cycle 0.34 0.55 0.59 0.63 0.59 

E-scooter 0.36 0.40 0.42 0.43 0.42 

Water heater 0.61 0.69 0.72 0.74 0.72 

Refrigerator 1.05 - - - 1.02 

Washing 

machine 

(decentralized) 

0.17 - - - 0.25 
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Since the appliance ownership rates for 2030 consist of three scenarios, they were 

compared with secondary data when available to verify the validity of the results and 

for scenario selection. According to IEA (2021), India’s AC ownership rate in 2030 is 

set to increase to 60%. MEFCC (2019), on the other hand, projects it to be 25.2% and 

MOP & AEEE (2018) estimates a value of 44%. Thus, the values estimated from the 

survey in each scenario fall under this range. Therefore, Scenario B (“maybe 50%) was 

chosen since it was neither optimistic nor pessimistic. For EVs, according to JMK 

Research and Analytics (2022) and IEA (2021), the electric two-wheeler ownership rate 

is estimated at 12.6% and 19%, respectively. As Auroville’s current EV ownership rate 

was already higher than this, Scenario B was again chosen since it was neither 

optimistic nor pessimistic. Details regarding AC and EV stock projections for 2030 

from secondary data are provided in Appendix E. 

Furthermore, the historic EV sales data from the rental and sales shop in Auroville were 

utilized to predict EV stock in 2030 in Auroville, and the ownership rates were 

comparable. For electric water heaters, no secondary data was available for comparison. 

Therefore, Scenario B was chosen for the same reason. The refrigerator ownership rate 

in 2030 remained similar to the current rate, as the additional stock was expected from 

only population growth. Similarly, new washing machine stock was also expected from 

only population growth. However, since the new population is expected to use 

decentralized washing machines, in contrast to the current centralized system used, the 

future ownership rate was greater than the current value.  

4.1.4 Aggregation of Load Profiles and Data Validation 

The typical load curves of each appliance and the current appliance ownership rates 

were used to construct the aggregated appliance-wise residential load profiles for the 

study region, also termed as the flexible component of the DT demand, from June to 

November 2022. Since smart meter aggregated residential active power data was 

available for only this period, the simulated profiles corresponding to this period were 

compared as a validation step and shown in Figure 4.5.  

The aggregated appliance-wise load curve and the aggregated smart meter load curve 

follow a similar pattern. They peak at 7 pm, with a second significant peak at 8 am. The 

lowest demand hours are in the afternoons and nights. The non-critical or controllable 

appliances contribute to around 81% and 67% of the evening and morning peaks, 
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respectively. The red hashed surface is the difference between the aggregated 

appliance-wise load and the aggregated residential load, representing other domestic 

loads. These include lights, fans, kitchen appliances, community laundry and kitchen, 

water pumps, iron, 50 kWh lithium-ion battery storage, and other electronic appliances. 

Water pumps are pressure-type pumps; therefore, they constantly operate, contributing 

to the baseload. Other domestic loads consume the most at night, probably due to fans, 

lights, and lithium-ion battery charging. Community laundry and kitchen contribute to 

the other loads in the mornings and afternoons, while in the evenings, it is likely through 

the usage of fans, lights, and other electronic appliances. Therefore, the generated 

appliance-wise load profiles follow the smart meter building data and thus be validated. 

The diversity factor (DF) – the sum of the peaks of the individual components in the 

load profile divided by the peak of the entire system – represents to what extent the 

individual components are peaking at the system’s peak. The closer the DF is to one, 

the more the individual components are peaking at the time of the system’s peak. In 

Figure 4.5, the individual components are the appliances, and the DF is 1.08. 

Figure 4.5:  

Appliance-wise daily average load profile from June to November 2022 in the study 

region 
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4.1.5 Yearly Average Appliance-wise Daily Load Profiles for 2022 and 2030 

Once the aggregated appliance-wise residential load profile was validated with the 

smart meter data in the previous step, the monthly average appliance-wise daily load 

profiles were simulated for 2030. However, in this section, only the appliances' yearly 

average daily load profiles for 2022 and 2030 are provided and used for the discussion. 

The monthly profiles are provided in Appendix F.  

The 2030 load profiles were forecasted based on the appliance stock estimated for 2030 

in the study region. According to MOP & AEEE (2018), the average Indian Seasonal 

Energy Efficiency Ratio (ISEER) value for air conditioners is currently 3.2 and is 

projected to increase to 5.9 by 2030. ISEER is a metric to evaluate the performance of 

air conditioners and is the ratio of cooling load to electric power consumption. 

Therefore, it was assumed that the power consumption would be reduced by a factor of 

3.2/5.9 = 54% from the current value for all new air conditioner stock by 2030. Figure 

4.6 and Figure 4.7 show the yearly average appliance-wise daily load profiles for 2022 

and 2030, respectively. 

The responsibility factor (RF) – the load of the individual component at the time of the 

system’s peak divided by the individual component’s peak – indicates the share of each 

individual component’s peak load contributing to the system’s peak. When RF is one, 

that individual component’s peak is at the time of the system’s peak. Table 4.4 provides 

the RFs of all appliances for 2022 and 2030, assuming that the aggregated appliance-

wise profile’s peak coincides with the system’s peak, as was the case for June to 

November 2022. RFs are similar for both years. ACs’ peak coincides with the system’s 

peak, whereas refrigerators’ and EVs’ peak almost coincides with that of the system. 

The share of these appliances to the aggregated appliance-wise peak load (the flexible 

component of the DT demand) was around 45%, 19% and 21%, respectively. This 

indicates that ACs, refrigerators and EVs might have a significant DR potential during 

the system's peak. While the system peaks in the evening, there is a second significant 

peak in the morning, with around 75% of the system’s peak load. Here, EWH’s 

coincides with the morning peak, while refrigerators’ and washing machines’ peaks 

almost coincide. These appliances’ DR potential is the most significant during the 

morning peak. 
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Figure 4.6:  

Yearly average appliance-wise daily load profiles for the study region in 2022 

 

Figure 4.7:  

Yearly average appliance-wise daily load profiles for the study region in 2030 
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Appliance 

2022 2030 

RF (evening 

or system 

peak) 

RF (morning 

peak) 

RF (evening 

or system 

peak) 

RF 

(morning 

peak) 

Fridge 0.98 0.85 0.98 0.85 

AC 1.00 0.33 1.00 0.33 

Electric water 

heater 0.45 1.00 
0.45 1.00 

E-cycle 0.83 0.09 0.89 0.12 

E-scooter 0.83 0.14 0.86 0.09 

Washing machine 0.01 0.96 0.01 0.84 

 

The aggregated appliance-wise peak load is set to increase from the current demand by 

almost 60% or 14.7 kW, from 24.6 kW to 39.3 kW. This forecasted growth is due to 

population growth in the study region as well as the existing population purchasing new 

appliances, mainly ACs and EVs. This data was obtained from the survey conducted in 

Auroville and didn’t use secondary data from the literature for forecasting. An 

important assumption is that there is no emergence of technology for the services 

provided by the selected appliances in the study. Furthermore, as these technologies are 

already mature, energy efficiency improvements are not considered except for ACs. 

While ACs and EWHs are weather sensitive, the effect of climate change on the usage 

of these appliances in the future is difficult to determine as it is complicated to do a 

long-term forecast for temperature and other weather factors in a specific region. Thus, 

this study did not consider the cooling demand change in the study region due to climate 

change in 2030. 

4.1.6 Distribution Transformer Load Forecast for 2030 

The flexible component of the DT demand was forecasted for 2030 in the previous 

section. The inflexible component, which consists of residential appliances such as 

fans, kitchen appliances, etc. and other non-residential loads such as office buildings, 

commercial buildings, hospitals, etc. was forecasted by assuming the historical CAGR 

of 0.065 (AVC, 2018) as done by Müller et al. (2018). Finally, the flexible component 

of the DT demand for 2030 is added together with the inflexible component of the DT 

demand for 2030 to obtain the DT actual and net load profiles in 2030, as shown in 

Figure 4.8 and Figure 4.9. The solar generation from the existing rooftop solar PV was 

assumed to remain the same by 2030. 
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Figure 4.8: 

Distribution transformer actual load forecast for 2030 

 

Figure 4.9: 

Distritution transformer net load forecast for 2030 

 

4.1.7 Discussion 

The appliance-wise and DT load profiles were projected to 2030. This projection 
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wise peak load (the flexible component of the DT demand) was around 45%, 19% and 

21%, respectively. Thus, this indicates their potential for DR.  

The residential sector has a second significant peak in the morning, with a share of 

around 75% of the aggregated appliance-wise peak load. Here, the electric water 

heaters’ peak coincides with the morning peak, while refrigerators’ and washing 

machines’ peaks almost coincide. Thus, these appliances’ DR potential was the most 

significant during the morning peak. However, since the DT doesn’t have a significant 

second peak, their DR potential may not be utilized in this study as DR is applied only 

to peak periods of the DT demand. 

The aggregated appliance-wise peak load was projected to increase from the current 

demand by almost 60%. Furthermore, the projections for 2030 were based on an 

important assumption that all new ACs to be bought by 2030 be energy-efficient. 

Without this assumption, the increase in demand from residential appliances would be 

even higher. Thus, a policy in the township that promotes only the purchase of energy-

efficient ACs would be effective. Furthermore, the cooling demand changes due to 

climate change were not accounted for in this study. Thus, considering the past trends 

in rising temperatures in the region, this measure is even more attractive. 

To summarize, this section provided the results of specific objective 1 – the DT and 

appliance-wise monthly average daily load profiles for 2030. These results are utilized 

in the next specific objective, which is discussed in the next section. 

4.2 Modified Distribution Transformer Load Profiles with Demand Response 

This section presents the results of specific objective 2 – modified DT load profiles with 

DR and the resulting technical DR potential. The appliance DR factors considered for 

the different DR scenarios are discussed in section 4.2.1, and section 4.2.2 provides the 

results of the modified DT load profiles with DR. The results of the different DR 

scenarios are compared by looking at the peak load reduction, load factor, and curtailed 

and shifted electricity consumption. The technical DR potential is the peak load 

reduction achieved. 

4.2.1 Appliance Demand Response Factors for Different Demand Response 

Scenarios 
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This study developed different DR scenarios based on the customer participation factor 

and the appliance types selected for DR. The appliance DR factors for each DR scenario 

are given in Table 4.5. The appliance DR factor is the product of customer participation 

and appliance-specific technical factors. While the former factor was assumed to 

change in all DR scenarios, the latter factor was the same since it is unaffected by any 

scenario. 

Table 4.5: 

Appliance DR factors assumed for all appliances under all DR scenarios  

Scenario Name 
DR 

maximum 

DR 

medium 

DR 

minimum 

DR 

EV&AC 

DR New 

App 

Appliances 

selected for DR 
All All All 

EV & 

AC 

Only all new 

appliances by 

2030 

Customer participation factor: 

Air conditioner 1.00 0.75 0.50 0.75 0.40 

Refrigerator 1.00 0.75 0.50 0.00 0.00 

Washing machine 1.00 0.75 0.50 0.00 0.00 

Electric storage 

water heater 
0.54 0.41 0.27 0.00 0.18 

Electric vehicle 1.00 0.90 0.80 0.90 0.31 

Appliance-specific technical factor: 

Air conditioner 0.40 

Refrigerator 0.20 

Washing machine 1.00 

Electric storage 

water heater 
1.00 

Electric vehicle 1.00 

Appliance DR factor: 

Air conditioner 0.40 0.30 0.20 0.30 0.16 

Refrigerator 0.20 0.15 0.10 0.00 0.00 

Washing machine 1.00 0.75 0.50 0.00 0.00 

Electric storage 

water heater 
0.54 0.41 0.27 0.00 0.18 

Electric vehicle 1.00 0.90 0.80 0.90 0.31 

 

It is not easy to estimate the share of customers participating in DR; therefore, a 

scenario-wise analysis was considered important. In DR Maximum, DR Medium and 

DR Minimum scenarios, all appliance types and existing and future appliance stock 

were assumed to participate in DR. Only the share of customers participating varied 
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from 100%, 75% and 50%, respectively, for the maximum, medium and minimum DR 

scenarios for ACs, refrigerators and washing machines. Since it is not possible for 

instant water heaters to participate in DR without affecting customer comfort, only the 

storage water heater type was considered. In the study region, 54% of the electric water 

heater stock was from the electric storage water heater type. From the survey conducted 

in Auroville, more customers were interested in participating in EV DR programs. 

Thus, the EV customer participation factor varied from 100%, 90% and 80%, 

respectively, in the maximum, medium and minimum DR scenarios. In the 

DR_EV&AC scenario, only electric vehicles and air conditioners were assumed to 

participate in DR. In the last scenario, only the new appliances to be bought by 2030 

were considered to participate in DR and their share was estimated from the survey 

results. 

The appliance-specific technical factor ensured customer comfort during DR and was 

assumed the same in all DR scenarios. The rationale for the assumptions made for this 

factor is explained here. In a pilot of AC DR run in Auroville, the AC was curtailed for 

12 minutes for a maximum of 2 times per hour. When the AC was curtailed 2 times in 

an hour, that AC was prohibited from participating in DR in the next hour. The room 

temperature was also monitored during this pilot and the results showed an increase of 

1.1 °C during the hours when DR was implemented (AVC, 2021c), which would not 

affect the customer’s comfort much. Thus, using the DR program and the results of this 

pilot, it was assumed in this study that the technical factor for AC is 24/60 = 0.4 (24 

minutes per hour). Next, for refrigerators, Southern California Edison (2012) conducted 

a detailed study on the ability of refrigerators to participate in DR and found that the 

performance of the refrigerators was not affected much for curtailment of less than 10 

minutes. Thus, the technical factor for refrigerators was assumed to be 10/60 = 16.7% 

and was rounded up to 20%. The customers are expected to completely shift the 

operation timings of washing machines, electric storage water heaters and electric 

vehicles from peak to off-peak hours since it is assumed that their usage cannot be 

stopped in the middle of their operation cycle and they don’t operate in part-load 

conditions. Thus, the technical factor of these appliances was assumed to be 100%. 

However, the DR algorithm ensured that the shifted load was returned online within 24 

hours for washing machines and EVs and within 4 hours for storage water heaters. 

Furthermore, the load of storage water heaters was only shifted before the usage time 
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to ensure that the customers could use the appliance according to their normal operation 

time without losing comfort. To summarize, the appliance-specific technical factors 

ensured customer comfort by considering the duration of DR events and the shifting 

time of appliances. 

4.2.2 Comparison of the Results of Different Demand Response Scenarios 

Table 4.6 provides the results of different DR scenarios for the DT load profiles in 2030. 

The monthly average daily load profiles for each DR scenario are provided in Appendix 

G. DR was applied only from March to September. For each DR scenario, the peak load 

reduction from the scenario without DR, the load factor, curtailed energy in a day, 

shifted energy in a day, and the technical potential of each appliance selected for DR 

are given. The observations are as follows: 

• The peak load reduction, also the overall technical potential of DR, in DR 

Maximum and DR New App scenarios are respectively 20.7% and 8.1%. Thus, 

even in the worst case where only all the new appliances to be purchased by 2030 

participate in DR (thus, this scenario has the least customer participation factor), 

8.1% of peak load reduction from the scenario without DR can be obtained. It is 

also interesting to note that the peak load reduction from the DR EV&AC scenario 

is higher than the DR Minimum scenario.  

• The effects of DR are also shown on the average load factor of the DT. The load 

factor is the ratio of the average demand in a day to the peak demand in a day. It 

increases from 55.8% in the scenario without DR to 63% in the DR Maximum 

scenario.  

• The average curtailed energy in a day ranges from 2.1 to 6.1 kWh. This is from 

the curtailment of a share of the AC and refrigerator loads during the peak hour of 

the day. In all scenarios where both appliances contribute to DR, around 86 to 87% 

of the curtailed energy is from ACs.  

• The average shifted energy in a day ranges from 40 to 51.8 kWh, except in the DR 

New App scenario. More than 90% of this is from EVs. Less than 8% is from 

water heaters, while only a small fraction of around 2% is from washing machines. 

• The technical DR potential of each appliance is the peak load reduction achieved 

from each appliance. This potential of ACs and EVs is the highest, with 11.9 and 

7.8%, respectively, in the DR Maximum scenario. The technical DR potential from 

refrigerators, washing machines and electric water heaters is quite low even in the 
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DR Maximum scenario, with 1.4%, 0% and 2.4%, respectively. This emphasizes 

the attractiveness of the DR EV&AC scenario. 
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Table 4.6: 

Comparison of the results of different DR scenarios of the DT load profile in 2030 

Performance metrics 
DR 

minimum 

DR 

medium 

DR 

maximum 

DR 

EV&AC 

DR New 

App 
No DR 

Peak load (kW) 86.9 82.8 80.2 85.7 93.0 101.1 

Energy consumption (kWh/day) 1138.0 1136.7 1135.4 1136.6 1138.8 1140.5 

Peak load reduction (%) 14.0% 18.1% 20.7% 15.2% 8.1% - 

Load factor (%)  60.6% 62.0% 63.0% 60.7% 58.2% 55.8% 

Curtailed energy 

Total (kWh/day) 3.1 4.6 6.1 4.0 2.1 - 

Fridge (%) 13.7% 13.7% 13.0% 0.0% 0.0% - 

AC (%) 86.3% 86.3% 87.0% 100.0% 100.0% - 

Shifted energy 

Total (kWh/day) 40.0 45.9 51.8 42.4 15.9 - 

EV (%) 94.1% 92.3% 90.9% 100.0% 91.9% - 

WM (%) 1.1% 1.4% 1.7% 0.0% 0.0% - 

WH (%) 4.8% 6.3% 7.4% 0.0% 8.1% - 

Technical 

potential 

Fridge (%) 0.7% 1.1% 1.4% 0.0% 0.0% - 

AC (%) 6.0% 8.9% 11.9% 8.9% 4.8% - 

EV (%) 6.3% 7.1% 7.8% 7.1% 2.4% - 

WM (%) 0.0% 0.0% 0.0% 0.0% 0.0% - 

WH (%) 1.2% 1.8% 2.4% 0.0% 0.8% - 
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4.2.3 Discussion 

The technical potential of DR under DR_Minimum, DR_Medium, DR_Maximum, 

DR_EV&AC and DR_New App scenarios are respectively 14.0%, 18.1%, 20.7%, 

15.2% and 8.1%. In terms of absolute values, they are 14.2 kW, 18.3 kW, 20.9 kW, 

15.4 kW, and 8.2 kW, respectively. The DR potential ranges from 8.1 to 20.7% in these 

scenarios, indicating the importance of the share of customers participating in DR and 

the appliance types selected for DR in the estimation of DR potential. Importantly, even 

when only all the new appliances to be purchased by 2030 participate in DR, 8.1% of 

peak load reduction is achieved. This leads to the requirement of an important policy 

measure to ensure all new appliances are embedded with smart features enabling them 

to participate in DR programs. 

The appliance-wise technical potential in the DR_Maximum scenario for ACs, EVs, 

refrigerators, washing machines and electric storage water heaters was 11.9%, 7.8%, 

1.4%, 0.0% and 2.4%, respectively. This provides an insight into which appliances to 

target for DR among the appliances selected for DR. Washing machines barely 

contributed to DR since their operation didn’t coincide with the system peak. The 

contribution of electric storage water heaters would be higher if most of the electric 

water heaters were of the storage type. Their technical potential was 2.4% despite the 

assumption that all new electric water heaters to be purchased by 2030 are of the storage 

type. Targeting ACs and EVs for DR would be recommended for financial and practical 

reasons as they have the highest DR potential. This is also represented by the 

DR_EV&AC scenario which has higher technical DR potential than the DR_Minimum 

scenario where all the appliances participate in DR although with a lower share of 

customer participation. 

The approach for implementing EV DR is through behavioral changes. In the survey 

conducted in Auroville, when the respondents who currently used an EV were asked 

how likely they were to change their vehicle charging hours to sunshine hours so that 

they use more solar energy than grid electricity even without receiving any electricity 

credits from the electricity utility, more than 75% said they were very/extremely likely 

(almost 40% said they were extremely likely) to change their vehicle charging pattern 

to sunshine hours (Appendix D). Thus, if offices and other public areas are equipped to 

charge EVs during the sunshine hours, it would facilitate EV DR implementation. This 
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would require policy changes to bring charging stations to the necessary areas as public 

demand is already there. 

The approach for implementing AC DR is slightly different as it requires an automation 

system that can allow direct control of ACs. Firstly, this would require Wi-Fi as the 

communication technology and smart plugs for ACs not embedded with smart features 

to enable DR. In the survey conducted in Auroville, around 85% of the households are 

already equipped with wi-fi connection (Appendix D). The ACs are curtailed for at least 

12 minutes and a maximum of 24 minutes a day during the summer months according 

to the technical factor considered in this study. According to the AC DR pilot conducted 

in Auroville, this would increase the temperature by around 1.1 °C (AVC, 2021c). Thus, 

as a real-time strategy to implement AC DR exists already, a business model to ensure 

high customer participation must be developed. 

While the above analyses were made, it is important to understand that the study's 

results depend on the composition of the DT loads. The technical DR potential will be 

greater in a DT that is mainly dominated by residential loads. The appliance-wise DR 

potentials will also be higher. This emphasizes the need for policies to mandate the 

embedding of smart features enabling DR in appliances.  

To summarize, this section presented the results of specific objective 2 – modified DT 

load profiles with DR and the resulting technical potential of DR. The appliance DR 

factors for each DR scenario were provided and the results of modifying the DT load 

profiles in 2030 with DR were discussed. The appliance-wise and aggregated technical 

DR potential, the average curtailed and shifted energy in a day, and the load factor were 

also provided for each DR scenario. DR EV&AC and DR New App scenarios are 

carried forward to the next specific objective to assess their financial feasibility. Among 

the DR scenarios where all appliances participate in DR, the DR Medium scenario is 

selected as it doesn’t assume a high or low customer participation factor. The results of 

microgrid sizing and the resulting financial analysis are discussed in the next section. 

4.3 Microgrid Sizing and Financial Analysis of Demand Response Scenarios 

This section presents the results of specific objective 3 – microgrid sizing of different 

DR scenarios and the resulting financial analysis. Firstly, the inputs required to size the 

microgrid for each DR scenario are provided. These include the description of the 
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system configuration, project-specific and technology-specific inputs, and the capital 

costs of the different components in the system. Next, the outputs from the HOMER 

Pro software are presented. These include the analysis of the capacities of the different 

components in the system, the verification of the power balance in the microgrid, the 

analysis of the system's electricity generation and consumption, and the financial 

analysis to compare each DR scenario. 

4.3.1 HOMER Pro Inputs 

The various inputs required to design the microgrid are presented in this section. 

 System configuration 

The renewable energy resources considered in this study for achieving a 100% net 

renewable energy microgrid in Auroville for the scenario without DR are biomass, solar 

and wind. The biomass available in the region is the pressmud, a byproduct of making 

sugar. The pressmud is converted to biogas and a biogas power plant generates 

electricity in the model. Solar and wind resources are also available in the region and, 

thus, considered in the model. 

Figure 4.10 shows the configuration of the microgrid. The biogas plant, grid and wind 

turbine are connected to the AC bus through which they supply to the load directly. 

Solar PV and battery are connected to the DC bus and supply to the load through the 

converter.  

Figure 4.10: 

System configuration 
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 Project-specific inputs 

The different project-specific inputs required to design the microgrid are provided in 

Table 4.7. The discount rate and project lifetime were obtained from the Tamil Nadu 

Electricity Regulatory Commission (TNERC) (TNERC, 2021). The inflation rate was 

the average inflation rate over the past five years in India (The World Bank, 2023). The 

current values of the grid energy and demand charges, network charges and feed-in 

tariff were escalated by 4% per annum by 2030 (TNERC, 2022). The maximum net 

grid purchases and minimum renewable energy fraction were set to 0 and 80%, 

respectively, according to the objective of this study. 

Table 4.7: 

Project-specific inputs for designing the microgrid in HOMER Pro software 

Project-

specific 

Inputs 

Units 
Value 

in 2030 

Current 

value 
Remarks 

Reference 

Discount rate % 8.67 -   
TNERC 

(2021) 

Project 

lifetime 
years 25 -   

TNERC 

(2021) 

Inflation rate % 4.55 - 
Average inflation rate of 

past 5 years in India   

Grid energy 

charges 
₹/kWh 9.69 7.08 

Current value: 6.75 

₹/kWh + 5% tax = 7.08 

₹/kWh 

Future value: 4% 

escalation rate per annum 

TNERC 

(2022) 

Grid demand 

charges 

₹/kW/ 

month 
878 642 

Current value: 550 

₹/kVA or 611 ₹/kW (0.9 

power factor) + 5% tax = 

641.67 ₹/kW 

Future value: 4% 

escalation rate per annum 

TNERC 

(2022) 

Network 

charges 
₹/kWh 1.31 0.96 

Future value: 4% 

escalation rate per annum 

TNERC 

(2021) 

Feed-in tariff ₹/kWh 4.24 3.10 
Future value: 4% 

escalation rate per annum 
TNERC 

(2021) 

Maximum net 

grid 

purchases 

kWh/year 0 - Study Objective 

  

Minimum 

renewable 

fraction 

% 80   Study Objective 
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Note: The current (April 2023) exchange rate for one Indian Rupee (₹) to US dollars is 

$ 0.012. 

 Component-specific inputs 

The different component-specific inputs are provided in Table 4.8. The solar PV 

efficiency, derating factor, temperature coefficient and operating temperature were 

based on the generic solar PV module in HOMER Pro software and were compared 

with secondary data. The solar radiation data was obtained from the NASA database 

for Auroville (HOMER Pro, 2023). The lithium-ion battery storage nominal voltage, 

capacity, and roundtrip efficiency were also based on the generic lithium-ion battery in 

HOMER Pro software. The minimum battery state of charge was set to 20%, as is 

common for these batteries (Independent Power Systems, 2021). The wind turbine 

rating was 10 kW and the hub height was set to 20m. The wind speed data was also 

obtained from the NASA database for Auroville (HOMER Pro, 2023). The biomass 

pressmud available per day in the region is around 1.2 tons and costs around 3,644 

₹/ton, including transportation (AVC, 2022). These values were obtained from 

Auroville Consulting, which extensively reviewed the township's biomass feedstock for 

electricity generation. The gas yield from pressmud is 0.241 l/g (Agrawal et al., 2012). 

The lower heating value of biogas was assumed to be 20 MJ/m3(Frazier & Ndegwa, 

2019). The typical lifetime of all components was obtained from Auroville Consulting’s 

‘Levelized Cost Calculator for Distributed Energy Resources’ tool (AVC, 2021d). 

Table 4.8: 

Component-specific inputs for designing each component in the microgrid in HOMER 

Pro software 

Component Unit Value 

Solar PV 

Rated capacity kW 1 

Efficiency % 13 

Derating factor % 80 

Temperature 

coefficient 
%/ °C 0.5 

Operating temperature °C 47 

Lifetime years 25 

Lithium-Ion battery pack 

Nominal voltage V 6 
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Component Unit Value 

Nominal capacity kWh 1 

Nominal capacity Ah 167 

Roundtrip efficiency % 90 

Minimum state of 

charge 
% 20 

Lifetime years 13 

Converter 

Nominal power kW 1 

Efficiency % 95 

Lifetime years 14 

Wind turbine 

Rated capacity kW 10 

Hub height m 20 

Lifetime years 25 

Biogas plant 

Rated capacity kW 50 

Biomass availability 

(pressmud) 
ton/day 1.2 

Gas yield L/g 0.241 

LHV of biogas MJ/m3 20 

Cost of biomass ₹/ton 3,644 

Lifetime years 25 

 

 

 System capital cost scenarios 

In the previous section, the component-specific details were provided. Here, the 

components’ capital cost and O&M costs are provided. A sensitivity analysis was done 

on the system capital costs (SCC) and two scenarios, SCC Min and SCC Max, were 

created as a fraction of the current technology costs. In the minimum scenario, the 

component capital cost for 2030 was considered 80% of the current costs. In the 

maximum scenario, the current values were also assumed to be used for 2030. Due to 

several reasons, such as the ongoing Russia-Ukraine war and Covid -19, the cost 

reductions by 2030 were not expected to be high. The current costs were obtained from 

the Central Electricity Regulatory Commission of India (CERC) and Auroville 

Consulting (AVC, 2021d; CERC, 2020) and provided in Table 4.9. In this study, smart 

plugs were considered the DR enabling technology for the existing residential 

appliances that don’t have smart features. 16A smart plugs were considered for electric 

vehicles, air conditioners and electric water heaters, whereas 6A smart plugs were 
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considered for refrigerators and washing machines.  The current costs of the smart plugs 

were obtained from an online search. 

Table 4.9: 

Component capital cost in 2030 in minimum and maximum system capital cost 

scenarios 

Technology Units 
Current 

(2020-21) 
SCC Min SCC Max 

Solar PV ₹/kW 38,000 30,400 38,000 

Battery pack ₹/kWh 22,171 17,737 22,171 

Converter ₹/kW 35,700 28,560 35,700 

Wind turbine ₹/kW 140,000 112,000 140,000 

Biogas plant ₹/kW 142,320 113,856 142,320 

Smart plug 16A ₹/unit 2,000 1,600 2,000 

Smart plug 6A ₹/unit 1,000 800 1,000 

 

The number of smart plugs to be purchased for 2030 is based on the number of 

customers participating in DR; hence, the capital cost of smart plugs is different under 

each DR scenario. Thus, Table 4.10 provides the cost of DR in each scenario as well as 

the breakdown of the share of each appliance type to the overall cost. In the DR New 

App scenario, since only the new appliances to be purchased by 2030, which are also 

enabled with smart features, are considered to participate in DR, the hardware cost of 

DR is assumed to be 0. 

Table 4.10: 

The breakdown of the DR capital cost for the different DR scenarios 

Smart plug cost breakdown 
DR 

medium 
DR EV&AC 

DR New 

App 

Total capital cost of smart plugs 

under SCC Maximum (Million ₹) 
0.315 0.096 0 

Total capital cost of smart plugs 

under SCC Minimum (Million ₹) 
0.252 0.077 0 

Refrigerator (%) 30.0% 0.0% - 

Air conditioner (%) 10.8% 35.5% - 

Electric vehicle (%) 19.6% 64.5% - 

Washing machine (%) 7.4% 0.0% - 

Electric storage water heater (%) 32.2% 0.0% - 
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Next, the O&M cost of each component is given in Table 4.11. The Central Electricity 

Regulatory Commission of India (CERC) used these values while determining tariffs 

for renewable energy sources (CERC, 2020). They assumed a cost escalation of 3.84% 

per annum, and this value was used to project the O&M costs for 2030 for the 

technologies considered in this study. However, for the biogas plant, a labour cost of 

10,000 ₹/month was added to consider the human resources required to operate and 

maintain a biogas power plant. 

Table 4.11: 

O&M cost of each component in the microgrid 

Technology O&M Cost 2021 (₹/kW-year) O&M Cost 2030 (₹/kW-year) 

Solar PV 600 875 

Battery pack 215 313 

Converter 750 1093 

Wind turbine 600 875 

Biogas plant 126,131 183,852 

 

4.3.2 HOMER Pro Outputs 

This section presents the outcomes of designing the microgrid under various DR and 

system capital cost scenarios. There are 8 scenarios – DR_Medium, DR_EV&AC, 

DR_New App and No DR under maximum and minimum system capital cost scenarios. 

The system sizing, power balance verification, system electricity generation, and 

financial analysis of the different scenarios are described in the subsequent sections.  

 System sizing 

Table 4.12 and Table 4.13 present the component capacities for all DR scenarios for 

SCC Maximum and SCC Minimum scenarios, respectively. Only the best case or the 

winning system architecture of each scenario is selected. For all scenarios, the winning 

system consists of battery, grid and solar PV since wind and biomass technologies are 

more expensive than solar PV in the region.  DR has the most impact on battery sizing 

for both SCC scenarios, with 7.3% and 6.2% reduction for the maximum and minimum 

scenarios, respectively. DR_Medium has the highest DR potential, followed by 

DR_EV&AC and DR_New App scenarios. Thus, the battery sizing increases 

progressively with DR_EV&AC, DR_New App and No DR scenarios. This is 

according to expectations since DR curtails or shifts load from peak to off-peak periods, 
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a service that storage also performs by discharging during peak hours and charging 

during off-peak hours. Thus, the higher the DR potential, the lower the need for storage. 

The battery autonomy ranges from 14 to 15 hours in all scenarios. DR doesn’t affect 

the sizing of the other systems too much in both the SCC scenarios. 

Table 4.12: 

System sizing of the different DR scenarios under the System Capital Cost Maximum 

scenario 

Component 

Capacity 
DR_Medium DR_EV&AC 

DR_New 

App 
No DR 

Battery (kWh) 836 870 886 902 

Converter 

(kW) 
64 63 61 61 

Grid (kW) 83 86 93 101 

PV (kW) 338 329 335 338 

 

Table 4.13: 

System sizing of the different DR scenarios under the System Capital Cost Minimum 

scenario 

Component 

Capacity 
DR_Medium DR_EV&AC 

DR_New 

App 
No DR 

Battery (kWh) 844 868 888 900 

Converter 

(kW) 
62 62 62 59 

Grid (kW) 83 86 93 101 

PV (kW) 338 335 333 342 

 

 Power balance verification 

Power balance verification checks whether the flow of electricity at each node or 

component of the microgrid is matched. This step is important to assess the truth of the 

results generated by the software. For each scenario, the software generated hourly 

values for grid purchases, grid sales, excess electricity, battery charging power, battery 

discharging power, solar generation and the load. This section explains the power 

balance verification step. 
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Figure 4.11 shows the schematic of the system configuration highlighting the different 

flows of electricity, where a = grid purchases or grid import, b = grid sales or grid 

export, c = converter to load, d = excess electricity or curtailed solar energy, e = battery 

charging power, f = battery discharging power, and g = solar to the converter. The 

power flow from the converter to the load is calculated from Equation 4.1, and the 

power flow from the solar panel to the converter is calculated from Equation 4.2: 

c = Load – grid purchases                                              Equation 4.1 

g = Solar PV generation – e – d                                              Equation 4.2 

Figure 4.11: 

Schematic of the system configuration for power balance verification 

 

 
 

Note: The rectifier power input and output, representing AC to DC power conversion, 

was always zero for all scenarios. Thus, the grid charged the battery at no point and, 

therefore, was not indicated by the flow of arrows. 

In this study, the power balance was verified for each timestep according to Equation 

4.5, where the converter output power equals the product of the converter input power 

and converter efficiency. 

Converter input = f + g                                                             Equation 4.3 

Converter output = c + b                                                              Equation 4.4 

c + b = (f + g) x converter efficiency                                            Equation 4.5 

 

 System electricity generation 
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The two sources that supply the load in the microgrid are solar PV and the grid. Table 

4.14 and Table 4.15 show the breakdown of this energy for SCC Maximum and 

Minimum scenarios, respectively. The microgrid design ensures that the load is 

supplied by 100% net-renewable energy. Thus, the annual grid purchases are less than 

the annual grid sales. Solar self-consumption is the electricity that is directly supplied 

to the load or through the battery. In all scenarios, this value is around 75% of the load. 

However, there is excess electricity production and system losses for all scenarios, and 

these values are around 10% of the solar PV generation. The energy balance was 

verified in all scenarios, i.e., the solar PV generation and grid purchases equal the solar 

self-consumption, grid sales, electricity excess and system losses. 

Table 4.14: 

The breakdown of annual electricity usage in the system under the System Capital 

Cost Maximum scenario 

System electricity 

breakdown 

(kWh/year) 

DR_Medium DR_EV&AC 
DR_New 

App 
No DR 

Solar PV generation  515,069 501,572 511,419 515,835 

Grid purchases 104,322 103,101 102,821 103,922 

Grid sales 106,628 103,434 103,168 106,537 

Solar self-

consumption 
310,757 312,208 313,168 312,843 

Excess electricity 55,140 43,090 51,510 52,395 

Electricity losses 42,544 42,840 43,573 44,060 

Electricity 

consumption 
415,079 415,309 415,989 416,765 

 

Table 4.15: 

The breakdown of annual electricity usage in the system under the System Capital 

Cost Minimum scenario 

System electricity 

breakdown 

(kWh/year) 

DR_Medium DR_EV&AC 
DR_New 

App 
No DR 

Solar PV generation  515,226 510,792 507,976 521,805 

Grid purchases 101,945 100,295 104,138 102,224 

Grid sales 102,153 101,400 106,467 103,483 

Solar self-consumption 313,134 315,014 311,851 314,541 
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System electricity 

breakdown 

(kWh/year) 

DR_Medium DR_EV&AC 
DR_New 

App 
No DR 

Excess electricity 57,203 51,210 46,144 59,598 

Electricity losses 42,736 43,168 43,514 44,183 

Electricity 

consumption 
415,079 415,309 415,989 416,765 

 

 Financial Analysis of DR Scenarios 

A financial analysis was done to assess the financial benefits of DR. The NPC, CAPEX 

and OPEX of the systems for each DR and SCC scenario are compared first. Then a 

summary table with all the financial analysis performance metrics, including LCOE, 

avoided costs and return on investment, is provided and discussed.  

The NPC of the system for each DR scenario is shown in Figure 4.12. In SCC Maximum 

and Minimum scenarios, the NPC of the system increases as the DR potential of the 

scenario decreases. In SCC Maximum scenario, around 36%, 50% and 14% of the NPC 

are due to CAPEX, OPEX, and replacement and salvage costs, respectively. In SCC 

Minimum scenario, these values are around 33%, 55% and 12%, respectively. The 

absolute cost of OPEX remains the same, whereas NPC reduces owing to CAPEX, so 

the share of OPEX to the NPC reduces in the minimum cost scenario compared to the 

maximum scenario. 

Figure 4.12: 

The net present cost of the system under all scenarios with a breakdown of the type of 

expenditure 
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The breakdown of CAPEX according to each component in the system is shown in 

Figure 4.13. The contribution of smart plugs to CAPEX is negligible even in the SCC 

Max with the highest DR potential scenario. Around 55 to 57% of CAPEX is due to the 

battery pack, 37 to 38% due to solar PV and a small share of 6 to 7% due to converter. 

The cost of solar and converter are almost the same in all DR scenarios within the same 

SCC scenario. The CAPEX of the battery increases as the technical potential of the DR 

scenario decreases.  

Figure 4.13: 

System CAPEX under all scenarios with the breakdown of the components in the 

system 
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The OPEX breakdown according to each system component is shown in Figure 4.14. 

As explained earlier, OPEX is unaffected by the SCC Maximum and Minimum 

scenarios. However, due to reductions in demand charges, OPEX reduces with higher 

DR potential scenarios. Around 80% of OPEX is due to grid charges. The remaining is 

due to the O&M costs of solar PV, converter and battery pack.  

Figure 4.14: 

System OPEX under all scenarios with the breakdown of the components in the 

system 
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The summary of all the performance metrics, including LCOE, avoided cost of energy 

and return on investment, for the financial analysis is provided in Table 4.16. The 

observations are as follows: 

• Compared to the scenario without DR, DR_Medium achieved a 3.4% and 3.5% 

reduction in NPC in SCC Maximum and Minimum scenarios, respectively. 

Although less than DR_Medium scenarios, a comparable share of reduction was 

achieved by DR EV&AC scenarios. Annualized cost is the annualized value of 

NPC and another way to view the costs of the system. Thus, the percentage 

reductions in annualized costs remained the same as with the percentage 

reductions in NPC. 

• Similarly, LCOE reduction was 3.1% and 2.9% in SCC Maximum and 

Minimum scenarios, respectively. 

• The avoided energy cost ranges between 0.9 to 0.36 ₹/kWh and 0.21 to 0.31 

₹/kWh for the SCC Maximum and Minimum scenarios, respectively. 

• The return on investment is the highest for the DR_EV&AC scenario as the 

initial investment for DR is only 0.096 MM ₹ and, whereas the returns are 3.06 

MM ₹ for the high capital cost scenario.  

Table 4.16: 

Summary of the financial analysis of different DR scenarios
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Scenario 

SCC Max SCC Min 

DR_Medium DR_EV&AC 
DR_New 

App 
No DR DR_Medium DR_EV&AC 

DR_New 

App 
No DR 

Peak load (kW) 82.8 85.7 93.0 101.2 82.8 85.7 93.0 101.2 

Electricity 

consumption 

(kWh/day) 

1137.2 1137.8 1139.7 1141.8 1137.2 1137.8 1139.7 1141.8 

NPC (Million ₹) 93.46 93.66 95.20 96.72 84.08 84.31 85.76 87.09 

CAPEX (Million ₹) 33.97 34.11 34.55 35.01 27.27 27.42 27.64 28.06 

OPEX (Million ₹) 46.91 46.97 47.61 48.50 46.56 46.61 47.81 48.27 

NPC % reduction 

from No_DR 
3.4% 3.2% 1.6% - 3.5% 3.2% 1.5% - 

NPC savings from 

No_DR scenario 

(Million ₹) 

3.26 3.06 1.52 - 3.00 2.78 1.32 - 

Annualized cost 

(Million ₹) 
5.95 5.96 6.06 6.15 5.35 5.36 5.46 5.54 

LCOE (₹/kWh) 11.40 11.49 11.67 11.76 10.34 10.38 10.44 10.65 

LCOE % reduction 

from No_DR 

Scenario 

3.1% 2.3% 0.8% - 2.9% 2.5% 1.9% - 

Avoided cost of 

energy (₹/kWh) 
0.36 0.27 0.09 - 0.31 0.27 0.21 - 

Smart plug cost (₹) 315000 95750 0 0 252000 76600 0 0 

Return on Investment 9.33 30.93 - - 10.92 35.26 - - 
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4.3.3 Discussion 

The microgrid was sized for each DR scenario, and a financial analysis was conducted 

to compare the scenarios with and without DR. According to the objectives of this 

study, the microgrid demand was designed to be sourced from 100% net renewable 

energy while limiting the share of grid imports/exports. This is important to ensure 

more renewable energy self-consumption rather than depending on the grid to highlight 

the effect of DR. The grid is only used as a balance so that there is a financial benefit 

as well as resources used efficiently. 

The renewable resources considered in the study were solar, wind and biomass. 

Biomass available in the region was pressmud. The model estimated the biogas 

generation from pressmud and used a biogas plant to generate electricity. The region's 

cheapest resource was solar; thus, the winning system architecture excluded wind 

turbines and biogas plants. 

The NPC of the system reduced from the scenario without DR according to the 

increasing potential of DR of the scenario. This is because of CAPEX reduction due to 

battery size reduction as well as OPEX reduction due to demand charges. As DR shifts 

the load from peak to off-peak hours, resembling the working of battery storage to 

discharge the battery during peak hours and charge the battery during off-peak hours, 

the decrease in battery capacity is according to expectations. Similarly, as DR reduces 

the peak load, the demand charges reduce proportionally.  

DR programs have different types of costs involved. In this study, the only costs 

estimated for DR are the hardware or smart plug costs to retrofit existing appliances 

that don’t have smart features enabling DR. Another important cost of DR is the 

incentive amount to be paid to the customers enrolled in DR. This value was estimated 

based on the total savings in NPC from scenarios with and without DR and the savings 

were divided among the customers participating in DR according to each DR scenario 

(Appendix H). The incentive amount was the highest for the DR_EV&AC scenario 

since it has the least number of appliances and customer participation, while the savings 

from NPC were relatively high. The share of the monthly incentive amount to the 

average monthly electricity bill of the customer was found to be 22.3% and 20.3%, 

respectively, for maximum and minimum system capital cost scenarios (Appendix H). 

This is a good amount to attract customers to enroll in DR. 
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DR also has different types of benefits for different stakeholders. Firstly, in this study, 

the DT demand in 2030 didn’t exceed its capacity (250kVA). Thus, the transmission 

and distribution capacity deferral benefits were not considered for the microgrid 

operators. Secondly, by reducing the peak demand from the grid, the grid operators save 

costs due to network congestion. Thirdly, the customers enrolled in DR profit from the 

incentive amounts paid to them by the microgrid operators. 

To summarize, this section provided the results of specific objective 3 – microgrid 

sizing and financial analysis of scenarios with and without DR. The various project-

specific and technology-specific inputs required to design the microgrid in the HOMER 

Pro software were provided. Different performance metrics such as NPC, CAPEX, 

OPEX, LCOE, avoided energy cost, and ROI were presented to compare all the 

scenarios with and without DR.  

4.4 Summary 

This chapter presented the results of each specific objective of this study. The DT and 

appliance-wise monthly average daily load profiles for 2030 were forecasted. Next, the 

DT load profiles were modified with DR based on different DR scenarios. Finally, the 

microgrid was sized and the results of the financial analysis were presented. The next 

chapter provides the conclusions and recommendations of this study. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

The concluding chapter presents the key findings according to the study's objectives. 

Finally, some recommendations for further study are also discussed. 

5.1 Conclusion 

The appliance-wise and DT monthly average daily load profiles were projected for 

2030. The aggregated appliance-wise peak load increased from the current demand 

(2022) by almost 60%. The DT peak load in 2030 was 101.1 kW. The responsibility 

factor for ACs, refrigerators and EVs was 1.00, 0.98 and 0.86, indicating that their peaks 

coincide greatly with the system peak. Electric water heaters and washing machines 

had relatively low RF – 0.45 and 0.01, respectively, as their peaks occur during the 

mornings. 

Next, the modified DT load profiles with DR were generated through a DR algorithm 

for several DR scenarios. These scenarios differed through the customer participation 

factor and the appliances considered for DR. The technical potential of DR under 

DR_Minimum, DR_Medium, DR_Maximum, DR_EV&AC and DR_New App 

scenarios was respectively 14.0%, 18.1%, 20.7%, 15.2% and 8.1%. And the appliance-

wise technical potential in the DR_Maximum scenario for ACs, EVs, refrigerators, 

washing machines and electric storage water heaters was 11.9%, 7.8%, 1.4%, 0.0% and 

2.4%, respectively. The highest DR potential was from AC and EVs. 

Finally, the microgrid was designed for the modified DT load profiles with DR and a 

financial analysis was conducted to compare the benefits of DR from the scenario 

without DR. Here, a sensitivity analysis was performed on the system capital costs 

(SCC). For the SCC maximum scenario, the NPC for the scenario without DR was 

96.72 MM ₹. The NPC reduction achieved by DR_Medium, DR_EV&AC and 

DR_New App was 3.4%, 3.2%, and 1.6%, respectively. The LCOE for the scenario 

without DR was 11.76 ₹/kWh. The avoided cost of energy for DR_Medium, 

DR_EV&AC and DR_New App was 0.36, 0.27 and 0.09 ₹/kWh. For the scenarios with 

DR, the CAPEX ranged between 33.97 and 34.55 MM ₹ and the OPEX ranged between 

46.91 and 47.61 MM ₹. The CAPEX and OPEX for the scenario without DR were 35.01 
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and 48.50 MM ₹, respectively. ROI was the highest for DR_EV&AC, with 30.93. 

Supposing these benefits were translated into incentives that could be provided to the 

customers enrolled in DR programs, the share of the incentive to the average monthly 

bill in Auroville was estimated at 22.3%. Next, for the SCC minimum scenario, the 

NPC and LCOE for the scenario without DR were 87.09 MM ₹ and 10.65 ₹/kWh, 

respectively. The NPC and LCOE reductions achieved by the DR scenarios were 

similar to the SCC maximum scenario. Again, ROI was the highest for DR_EV&AC, 

with 35.26. The share of the incentive to the average monthly bill was estimated at 

20.3%. 

Overall, the DR_EV&AC scenario had the highest ROI and is the most financially 

attractive DR scenario. This study shows the potential and importance of residential 

DR, particularly in India. India is planning to power 50% of its electricity consumption 

in 2030 with renewable energies. Parallelly, the penetration rates of household 

appliances such as air conditioners and electric vehicles are growing rapidly, 

contributing to around 50% of the evening peak demand in 2030 (IEA, 2021). In this 

context, the outputs of this techno-economic study were able to help both network 

operators and residential customers see the financial viability of demand response 

programs in the residential sector which are currently in a nascent stage in India. 

 

5.2 Recommendations  

This section provides some recommendations to improve this study and further 

recommendations to go beyond the scope of this study. There are a couple of 

suggestions to improve the data used in this study. Firstly, water heaters were only 

monitored during the monsoon months due to limitations of the data collection period 

of this study. Thus, monitoring water heaters for a full year is recommended as their 

usage depends on temperature and season. Secondly, to facilitate the survey 

respondents, the options for typical usage hours of an appliance in a day were provided 

in large intervals, i.e., 9 am – 12 pm. It is recommended to provide all hours in a day as 

options in the survey questionnaire since the resolution of the resulting load profiles in 

this study is hourly. Further recommendations for future studies are the following: 

• This study assessed the potential of DR to achieve a 100% net renewable energy 

microgrid. However, extending the scope to consider other demand side techniques 
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could be more financially attractive – energy conservation measures from 

behavioural changes, energy efficiency measures and a shift of technology to 

provide the same services, i.e., solar water heaters, solar cookers, decentralized and 

small-scale ice storage systems for refrigeration needs, etc.  

• For example, Appendix I provides the results of a scenario termed Solar_WH where 

along with DR, all the existing electric water heaters and those to be purchased by 

2030 were assumed to be replaced with solar water heaters. 

o  The results show a 5 to 6% reduction in NPC compared to the scenario 

without DR. 

o The LCOE in SCC maximum and minimum scenarios are 11.22 and 10.11 

₹/kWh, respectively.  

o The avoided cost of energy is 0.54 ₹/kWh.  

o ROI is 1.12 and 1.79 in SCC maximum and minimum scenarios, 

respectively.  

o Compared to the DR_Medium scenario, the reduction in NPC and LCOE 

from the scenario without DR is higher. However, ROI is 4 to 5 times lower. 

This is due to the high initial investment in solar water heaters. Thus, from 

an investor’s perspective, the DR_Medium scenario is attractive due to 

higher returns from lower investments. However, from the user’s 

perspective, Solar_WH is attractive due to the higher avoided cost of energy. 

• The results of this study demonstrated the attractiveness of DR, especially 

DR_EV&AC, where ROI was above 30 for both SCC scenarios. It also provided 

the margin to pay incentives to the customers enrolled in DR, which amounted to 

around 20% of their average monthly electricity bill. Thus, a business model that 

benefits both the microgrid operators and customers is recommended to be 

developed. This model could target both ACs and EVs. 

• A few policies are required to support the business model. The policy instruments 

for these changes, their barriers and challenges must be explored: 

o  Only smart and energy-efficient appliances must be encouraged to be 

purchased. This is particularly important for ACs and EVs. Smart ACs are 

already available in the Indian market; however, this is not true with EVs. 

Furthermore, smart EVs must also have bidirectional inverters to enable 

vehicle-to-grid (V2G) discharging to support the grid during peak hours. 
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o For water heaters, either electric storage water heaters or solar water heaters 

must be encouraged to be purchased.  

o Customers responded in the survey that they were very likely to shift their 

charging hours to sunshine hours if they could use more solar energy than 

grid energy. Thus, to complement EV DR, more public charging stations, 

especially in offices, are recommended to be built as the customer demand 

already exists.  

• The results of this study are dependent on the case study region and the selected DT 

for DR. The selected DT demand didn’t cross its rated capacity even in 2030. So, if 

this research is applied to other DTs in India that are dominated by residential loads 

and have reached 60 - 80% of the rated capacity, the distribution capacity deferral 

benefit along with the other benefits of DR would be highlighted. It would also 

increase the incentive amount that could be paid to the customers enrolled in DR.   

• According to the survey conducted in Auroville, customers were more likely to 

participate in incentive-based DR than price-based DR. Thus, a flat grid tariff was 

used in this study. However, since price-based DR has potential in other parts of 

India, performing a sensitivity analysis on the TOU grid tariff structure and 

conducting a financial analysis under those scenarios is recommended. This would 

also highlight the DR potential since the savings from the scenario without DR 

would be relatively higher due to the services provided by DR. 
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APPENDIX A 

Pilots of Demand Response Programs in India 

Very few DR pilot projects have been implemented in India to date. One project was 

run in Mumbai, India, by the Tata Power electric utility in 2014. It was for the 

commercial and industrial (C&I) sectors for customers connected to above 500 kW 

load. The program curtailed air-conditioning load and shifted the process-heating 

applications' electricity consumption using thermal storage. The peak load reduction 

potential was 18 MW (Hale et al., 2018). Another pilot project was conducted in Delhi, 

India, by the Tata Power Delhi Distribution Limited (TPDDL) in 2016. It was for C&I 

customers connected to above 300 kW load. The peak load reduction potential was 12 

MW (Hale et al., 2018). One more pilot was implemented in Rajasthan, India, by the 

Jaipur Vidyut Vitran Nigam Limited. It was for 10 large industrial customers and the 

DR potential was found to be 22 MW (Sarkar & Mukhi, 2016). All these above pilots 

targeted the C&I sectors in India. 

Very recently, the first-ever residential DR pilot was launched by TPDDL in India in 

2021. The program's first phase, which lasted 3 months, involved 4,000 residential 

customers with smart meters (TPDDL, 2021). Only the distribution transformers (DT) 

whose maximum loading capacity reached 65 – 80% during the peak periods were 

selected. Forty-nine such DTs were selected for the program (TPDDL 2022). The 

information was communicated through SMS, emails and calls to interested customers 

a day in advance. They were given attractive incentives based on participation, ranging 

up to vouchers worth INR 4200. As many as 16 events ranging from 1 to 2 hours were 

called during this period, with 7.68 MW of DR potential (TPDDL 2022). The project 

was launched to understand the impact of customers’ participation during peak demand 

and to assess the acceptability of customers towards such. Of course, this was also 

intended to reduce network management costs (TPDDL, 2021). This pilot was 

especially possible due to the smart meter infrastructure in TPDDL (TPDDL 2022). 
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APPENDIX B 

Studies that Estimated Economic Demand Response Potentials 

Advanced Energy Economy Institute (2017) assessed the economic potential of DR in 

the residential sector in Michigan, United States. Two types of DR programs were 

considered for the residential sector – critical peak pricing (CPP) and direct load control 

(DLC) for smart thermostats. The cost benefits of DR are in reducing the need for 

generation capacity and deferring updates to transmission and distribution networks. 

Since valuing these benefits is a complicated endeavor, three scenarios with high, 

medium and low values of generation, transmission and distribution capacity deferral 

benefits were created. On the other hand, participant incentives comprise most of the 

cost of DR programs, and for the three scenarios, different incentive costs were 

assumed. Their modelling approach maximized the net benefits and not the demand 

reduction potential. The economic potentials assessed for CPP and DLC in the 

residential sector were respectively 382 and 151 MW (AEE Institute, 2017).  

One study assessed the economic potential of 5 households in India that are currently 

under the flat tariff scheme. Three different tariff structures – flat tariff, TOU, and RTP 

were studied to find the impact of dynamic pricing schemes on the load profiles of the 

customers. RTP was simulated using day-ahead electricity market price data obtained 

from the Indian Energy Exchange. This data was used to schedule residential appliances 

such as air conditioners, water boilers, EVs, washing machines, water pumps and 

vacuum cleaners, subject to some operating constraints such as user comfort levels, 

operating patterns of appliances, weather conditions, the priority of appliances, etc. The 

results showed a potential of around 2.8 kW during peak load periods from 11 pm to 3 

pm and 6 pm to 9 pm. The study found that with TOU and RTP tariffs, the customer 

bill reduces respectively by 4.35% and 5.69% from flat tariff bills (Nair & Rajasekhar, 

2014). 
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APPENDIX C 

Studies that Estimated Achievable Demand Response Potentials  

Smart Electric Power Alliance (SEPA) assessed the achievable potential in the 

residential sector in the United States. From survey data collected from around 190 

electric utilities across the country, the study found that around 7.4 GW was enrolled 

in the residential sector in 2018. This is namely from AC, thermostat control, water 

heater and other behavioural DR. From 7.4 GW, the actual demand reduction achieved 

or the achievable potential was around 4.3 GW, with a majority from AC switch 

programs (Medha et al., 2019).  

One pilot was conducted by TPDDL utility in Delhi, the capital of India, and found a 

potential of around 7.68 MW during 16 events called in a span of 3 months (TPDDL, 

2022). This project is described in Appendix A.  
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APPENDIX D 

Survey Questionnaire  

The survey conducted in Auroville was divided into two parts. The first part consisted 

of the general household appliances such as air conditioners, electric water heaters, and 

washing machines, referred to as the ‘general survey’, while the second part consisted 

of only electric vehicles and is referred to as the ‘EV survey’. The survey questionnaires 

of both the general and EV survey are provided below. The answer options are provided 

in square brackets along with the questions. Figure D1 shows the Wi-fi usage patterns 

in Auroville. Figure D2 shows the likelihood of EV users shifting their vehicle charging 

hours to sunshine hours. 

General survey: 

1. Including you, how many people usually live in your household? [Single option: 

1/2/3/4/More than 4] 

2. Which of the following do you do with respect to wi-fi connection in your 

house? [Single option: I don’t have a wi-fi connection / Leave it on always/ 

Switch it off at night/ Switch it on only when needed] 

3. Which of the following appliances are used in your residence? [Multiple choice: 

Air conditioner/ Washing Machine/ Electric water heater/ Electric Vehicle/ 

Refrigerator/ None of the above] 

4. Are you likely to install an AC in the next 5 to 8 years if there is no policy on 

AC purchase? [Single option: Yes/ No/ Maybe] 

5. Are you likely to buy any other appliance that provides cooling in the next 5 to 

8 years? [Multiple choice: Fan/ Air cooler/ None/ Other] 

6. Are you likely to install an electric water heater in the next 5 to 8 years? [Single 

option: Yes/ No/ Maybe] 

7. If you are not using an electric vehicle currently, are you likely to get an electric 

vehicle in the next 5 to 8 years? [Single option: Yes/ No/ Maybe] 

8. Changing your electricity consumption patterns can help the environment and 

can reduce costs. Suppose the electricity utility was to provide you with some 

electricity credits to operate some of your appliances at a different time of the 

day instead of your current usage. How likely would you be to participate in 
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such a program? [Single option: Not at all likely/ Slightly likely/ Moderately 

likely/ Very likely/ Extremely likely] 

9. If the electricity prices are changed such that during the evening hours (5 pm to 

9 pm), it is priced 20-30% higher than the normal periods and 15-20% lower 

during the afternoon hours (10 am – 4 pm), how likely are you to change the 

usage pattern of your appliances? [Single option: Not at all likely/ Slightly 

likely/ Moderately likely/ Very likely/ Extremely likely] 

10. How many ACs do you use? [Single option: 1/2/3/More than 3] 

11. What is the typical temperature setting you use? [Single option: Less than 18 

°C/ 18 – 20 °C/ 20 – 22 °C/ 22 – 24 °C/ 24 – 26 °C/ 26 – 28 °C/ More than 28 

°C] 

12. What is the type of your water heater?  [Electric water heater - instant (heats 

water instantaneously)/ Electric water heater - storage (requires longer time to 

heat water)/ Solar water heater/ Hybrid (solar & electric water heater)/ Not sure] 

13. How frequently is hot water used in the monsoon season? [Single option: 

Almost every day/ Almost 3 to 4 days a week/ 2 days a week/ Less than once a 

week] 

14. When is the washing machine usually used on a weekday?  

15. When is the washing machine usually used on a weekend day? 

16. How many rounds are done on a weekday?  

17. How many rounds are done on a weekend day? 

EV Survey: 

1. Including you, how many people usually use your vehicle? [Single option: 

1/2/3/More than 3] 

2. Which of the following do you do with respect to wi-fi connection in your 

house? [Single option: I don’t have a wi-fi connection / Leave it on always/ 

Switch it off at night/ Switch it on only when needed] 

3. For how many km (on average) does your vehicle run on a weekday? 

4. For how many km (on average) does your vehicle run on a weekend day?  

5. Where is your electric vehicle usually charged? [Single option: Home/ Office/ 

Home & Office/ Other] 

6. When is your electric vehicle usually charged on a weekday?  
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7. When is your electric vehicle usually charged on a weekend day?  

8. How often is your electric vehicle charged in a week? [Single option: Every 

day/ Once in two days/ Thrice a week/ Twice a week] 

9. For how long is your electric vehicle usually charged? [Single option: Less than 

3 hours/ 3 hours/ 4 hours/ More than 4 hours] 

10. Suppose the electricity utility was to provide you with some electricity credits 

if you charged your electric vehicle at a different time of the day instead of your 

current charging hours. Are you likely to participate in such a program? [Single 

option: Not at all likely/ Slightly likely/ Moderately likely/ Very likely/ 

Extremely likely] 

11. Suppose the electricity utility provides you with some electricity credits as an 

incentive to allow your vehicle’s battery to power the grid during some period 

of a month. Are you likely to participate in such a program? [Single option: Not 

at all likely/ Slightly likely/ Moderately likely/ Very likely/ Extremely likely] 

12. Suppose the electricity prices are changed such that during the evening hours (5 

pm to 9 pm), it is priced 20-30% higher than the normal periods and 15-20% 

lower during the afternoon hours (10 am – 4 pm). How likely are you to change 

your current vehicle charging hours? [Single option: Not at all likely/ Slightly 

likely/ Moderately likely/ Very likely/ Extremely likely] 

13. Would you change your vehicle charging hours to sunshine hours to use more 

solar energy than grid electricity (without receiving electricity credits from the 

electricity utility)? [Single option: Not at all likely/ Slightly likely/ Moderately 

likely/ Very likely/ Extremely likely] 
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Figure D1: 

Wi-fi usage patterns in Auroville 

 

Figure D2: 

Customer likelihood to change electric vehicle charging hours 
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Would you change your vehicle charging hours to sunshine hours 

so that you use more solar energy than grid electricity (without 

receiving any electricity credits from the electricity utility)?
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APPENDIX E 

AC and EV Stocks in 2030 in India from Secondary Data 

AC stock in 2030 in India: 

Room air conditioners (RAC) stock has grown massively in the past years in India, 

starting with 0.3 million in 2007 (Pandita et al., 2022) to 39 million units in 2017, 

equivalent to around 7% penetration in 2017 (AEEE, 2018). Projections from various 

sources such as the Ministry of Environment, Forest & Climate Change; the Ministry 

of Power (MoP); Indian think tanks (Council on Energy, Environment, and Water 

(CEEW) and Alliance for Energy Efficient Economy (AEEE)) and international think 

tanks (IEA and Lawrence Berkeley National Laboratory (LBNL)) show a significant 

increase in RAC stock and RAC penetration in India. Table E1 provides RAC stocks 

or RAC penetration projections in India by the above sources. 

 

Table E1:  

RAC stock or penetration rate projections in India in 2030  

Projection for 

India 

Year The methodology used for the 

projection 

Reference 

60% ownership 2030 Not found IEA, 2021 

21% penetration 

(&1.2 RACs / 

household with 

AC) 

2027-

28 

Expert surveys from building 

constructors and industry 

professionals and studying trends in 

other appliances 

MEFCC, 

2019 

170 million units 

/ CAGR 15% 

2027 Bureau of Energy Efficiency (BEE) 

production data is used for RAC sales, 

which will grow at CAGR of 15% 

MOP & 

AEEE, 2018 

 

According to IEA (2021), by 2030, the AC ownership will be 60%, or in other words, 

there will be 60 units of ACs per 100 households. This value is significantly different 

from MEFCC (2019) estimates based on expert surveys from buildings constructors 

and industry professionals. The AC penetration is 21% and households that own an AC 
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own, on average, 1.2 ACs, which results in a total of 21% x 1.2 x 100 households = 25 

ACs per 100 households.  

India is estimated to have 386 million households by 2030 (Confederation of Real 

Estate Developers’ Associations of India, 2019). Using this figure, according to MOP 

& AEEE (2018), the appliance ownership with 170 million AC units is 170/386 = 44%. 

In this latter study, RAC stock is predicted using BEE production data. 

EV stock in 2030 in India: 

The adoption of EVs in India is also growing. There are favorable policies for EV 

growth, such as Faster Adoption & Manufacturing of (Hybrid &) Electric Vehicles 

(FAME) India Scheme, Production Linked Incentive for Advanced Chemistry Cell 

Battery Storage (PLI-ACC) Scheme, Battery Swapping Policy, etc. (IBEF, 2022). 

According to the Federation of Automobile Dealers Associations’ (FADA) data, EV 

sales have risen 155% yearly since 2019, reaching around 430 thousand units now 

(Rudra, 2022). The growth of EV adoption is set to continue, as per the Government of 

India’s policy think tank, Niti Aayog, and other institutions such as the Rocky Mountain 

Institute (RMI), JMK Research and Analytics, and IEA, and their projections are 

provided in Table E2. 

Table E2:  

EV stock or penetration rate projections in India in 2030  

 

EV sales penetration/ stock 

projection for 2030 in India 

The methodology used for the 

projection 
Reference 

92% of EV (sales) penetration 

according to 3 scenarios. 

The projection is based on 

three scenarios with different 

demand incentive periods, 

battery cost and vehicle 

performance. A full constraint 

is imposed on the charging 

infrastructure and vehicle 

production.  

Niti Aayog, 

2022 
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EV sales penetration/ stock 

projection for 2030 in India 

The methodology used for the 

projection 
Reference 

A cumulative value of 50 

million EVs, 79% of which is 

2Ws. 

Electric 2Ws are assumed to 

have a CAGR of 57.86% from 

current growth rates. 

JMK Research 

and Analytics, 

2022 
 

19% of the total stock of 

2&3W is electric/total 55 

million electric 2&3W stock. 

The projection is for the stated 

policies scenario, which 

considers several government 

policies and incentives for EV 

purchase and charging 

infrastructure. 

IEA, 2021 
 

80% of 2&3 wheelers sales 

penetration is electric. 

The projection is based on 

implementing Faster Adoption 

and Manufacturing of Electric 

Vehicles - 2 (FAME 2) & other 

stated policies and measures. 

RMI & Niti 

Aayog 2019 
 

 

In forecasting the penetration of electric two-wheelers (E2W) in India, Niti Aayog 

modeled 8 scenarios for E2W penetration, out of which in 3 scenarios, the penetration 

is around 92% by 2030 (Niti Aayog, 2022). According to the study by JMK Research 

and Analytics (2022), there will be 50 million EVs in 2030, out of which 79% is electric, 

resulting in 50 million x 79% = 39.5 million E2W. Assuming that the 2-wheeler stock 

in India in 2030 is 313 million (Singh et al., 2020), the ownership rate is estimated at 

39.5 / 313 = 12.6%. This figure is comparable to IEA’s (2021) projection which is 19% 

for E2W and E3Ws. If FAME 2 and other policies supporting EV adoption in India are 

implemented, RMI & Niti Aayog (2019) predict that the sales penetration of E2W and 

E3W in 2030 will be 80%. 
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APPENDIX F 

Monthly Average Appliance-wise Daily Load Profiles in 2022 & 2030 

Figure F1 shows the appliance-wise monthly average daily load profiles for the case 

study residential region in Auroville from July to November 2022. The simulated load 

profiles are compared with the aggregated residential smart meter data. Figure F2 shows 

the appliance-wise monthly average daily load profiles forecasted for 2030. 

 

Figure F1: 

Appliance-wise monthly average daily load profiles from July to November 2022 

compared with smart meter aggregated residential data
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Figure F2: 

Appliance wise monthly average daily load profiles forecasted for 2030 
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APPENDIX G 

Modified Distribution Transformer Load Profiles in 2030 with 

Demand Response 

The modified DT monthly average daily load profiles in 2030 with DR are presented 

in this section. Several DR scenarios were created in this study, among which the load 

profiles of the DR scenarios with the highest and lowest DR potential are illustrated in 

Figure G1 and Figure G2. The figures compare the DT load profiles with (blue line) 

and without (orange line) DR. It can be seen that DR is applied only from March to 

September, which also coincides with the hottest months of the year in Auroville. 

Figure G1: 

DT monthly average daily load profiles in 2030 with (DR_Maximum) and without DR 
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Note: Orange line represents load profiles without DR and blue line represents 

modified load profiles with DR 
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Figure G2: 

DT monthly average daily load profiles in 2030 with (DR_New App) and without DR 

 

Note: Orange line represents load profiles without DR and blue line represents 

modified load profiles with DR 
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APPENDIX H 

Estimation of Incentive Amount for Implementation of the 

DR_EV&AC Scenario 

Based on the average monthly electricity consumption in Auroville, and the number of 

customers participating in DR in the DR_EV&AC scenario, Table H1 provides the 

maximum monthly incentives that can be paid to the customers for enrolling in DR. 

Under both system capital cost scenarios, the share of the incentive to the monthly 

electricity bill is attractive, with 22.3% and 20.3% for maximum and minimum system 

capital cost scenarios, respectively. 

 

Table H1: 

Monthly incentive amounts to customers for implementing the DR_EV&AC scenario  

 

Incentive amount estimation for 

DR EV&AC Scenario 
SCC Max SCC Min 

Savings in annualized cost from No 

DR Scenario (₹) 
194,487 176,685 

The monthly incentive to customers 

(₹) 
427 387 

Share of incentive to the monthly bill 22.3% 20.3% 

 

 

 

 

 



 

  125 

APPENDIX I 

Technology Shift 

Solar Water Heaters: 

In this study, only the effect of DR to achieve a 100% net renewable energy microgrid 

was analyzed. However, there are other demand side techniques that could also be 

combined to achieve this target with low-cost options. One such option is the 

substitution of electric water heaters with solar water heaters, in addition to DR. Thus, 

a scenario termed Solar_WH was created, assuming that all the existing water heaters 

and those to be purchased by 2030 are replaced with solar water heaters. The 

assumptions/inputs used for this scenario are provided in Table I1, and Table I2 

provides the financial analysis of this scenario. 

Table I1: 

Assumptions and inputs used for Solar_WH scenario 

Assumption/input Value References 

Electric storage water heater size 

for a 2-person household 

15 liters Racold (2021)  

The typical cost of a 15l electric 

storage water heater 

7900 Joy (2022) 

Solar water heater size for 2 

persons 
100l Unilet Solar (2023)  

The typical cost of a 100l solar 

water heater 
30000 Kenbrook Solar (2022) 

 

Table I2: 

Financial analysis of Solar WH scenario under System Capital Cost maximum and 

minimum scenarios 

 

Performance 

metric 

SCC Max SCC Min 

Solar 

WH 
DR_Medium 

No 

DR 

Solar 

WH 
DR_Medium 

No 

DR 

Peak load 

(kW) 
79.2 82.8 101.2 79.2 82.8 101.2 

Electricity 

consumption 

(kWh/day) 

1075.6 1137.2 1141.8 1075.6 1137.2 1141.8 
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Performance 

metric 

SCC Max SCC Min 

Solar 

WH 
DR_Medium 

No 

DR 

Solar 

WH 
DR_Medium 

No 

DR 

Cost of solar 

water heaters 

(Million ₹) 

2.00 0.00 0.00 1.57 0.00 0.00 

Cost of smart 

plugs (Million 

₹) 

0.21 0.32 0.00 0.17 0.25 0.00 

Initial 

investment 

(Million ₹) 

2.21 0.32 0.00 1.74 0.25 0.00 

LCOE 

(₹/kWh) 
11.22 11.40 11.76 10.11 10.34 10.65 

NPC (Million 

₹) 
92.04 93.46 96.72 82.23 84.08 87.09 

Avoided cost 

(₹/kWh) 
0.54 0.36 - 0.54 0.31 - 

NPC savings 

(Million ₹) 
4.68 3.26 - 4.86 3.00 - 

NPC savings 

(%) 
0.05 0.03 - 0.06 0.03 - 

ROI 1.12 9.33 - 1.79 10.92 - 

 

 

Vapor Absorption Chiller Systems: 

The study region also has cooling demand which is currently met by ACs. This section 

presents the preliminary analysis done to find the financial viability to meet this demand 

with vapor absorption chiller systems (VACS). The cooling demand in the case study 

region is roughly 40 TR. Table I3 presents the assumptions/inputs used for the 

estimations. The results show that VACS is not financially viable as ACs are cheaper 

in the case study region. 

Table I3: 

Assumptions and inputs used for VACS financial analysis 

Parameter Value Unit Reference 

40 TR VACS capital cost 8.5 MM ₹ Online search 

Average installation cost 0.28 MM ₹/TR 
(U.S. Department of 

Energy, 2017) 

Annual typical cooling 

demand met by ACs 
1800 kWh/year From study results 
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Parameter Value Unit Reference 

Annual cost of cooling 

demand met by ACs 
697,680 ₹/year  

Annualized cost of 40 TR 

VACS 
1,253,144 ₹/year  

 

 

 

 



 

  128 

VITA 

Yogitha Miriyala 

 

Education Background 

• Master of Science in Sustainable Energy Transition; Asian Institute of 

Technology; Pathumthani, Thailand; May 2023. 

• Bachelor of Science in Physics, Chemistry, Mathematics and Solar Science; 

Sri Aurobindo International Centre of Education; Puducherry, India; October 

2020. 

 

Work Experience 

• External Consultant; Data Analytics with PYTHON; Indian Institute for 

Human Settlements; Bangalore, India; May 2022 to September 2022. 

• Research Intern; Life Cycle Assessment of Innovative Wall Systems; Indian 

Institute for Human Settlements; Bangalore, India; January 2021 to July 2021. 

 

Academic Conferences 

Miriyala, Y., Thounaoujam, A., Vaidya, P., & Mangrulkar, A. (2022). Opportunities 

and challenges for LCA in India for innovative technologies. Proceedings of the 

PLEA 36th Conference (pp. 486 – 491). Passive and Low Energy Architecture. 

https://plea2022.org/wp-content/uploads/2023/03/PROCEEDING-ONLINE-

FINAL-MARZO.pdf 

 

 

 

https://plea2022.org/wp-content/uploads/2023/03/PROCEEDING-ONLINE-FINAL-MARZO.pdf
https://plea2022.org/wp-content/uploads/2023/03/PROCEEDING-ONLINE-FINAL-MARZO.pdf

