
Concept for Water supply in Auroville City Area

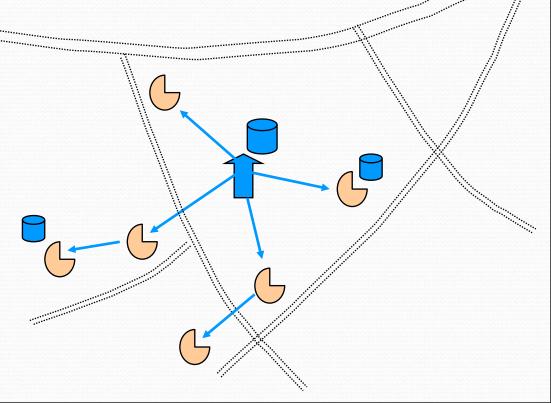
Auroville 2011 Gilles, Christian, Gilles

Why have we decided to develop a concept?

- By looking at immediate needs, means, sustainability and scalability, various solutions are possible and must be investigated
- The actual water supply systems is not evolutive and leads to a dead lock :
 - no separation of resource management and supply
 - Very complex network
 - Fragile (well collapsing...)
- The study conducted by Dirk and Toby is not defining a concept but develop a detailed solution
 - Alternative options are not studied
 - Use of existing sources of water is absent and multiple sourcing is not investigated
 - > Lack of adaptability to changing and difficult to predict context
 - > Fully dependent on new resources, not yet available: existing wells disregarded
 - Fully centralized, monolithic, captured approach
 - It does not offer solutions for immediate needs

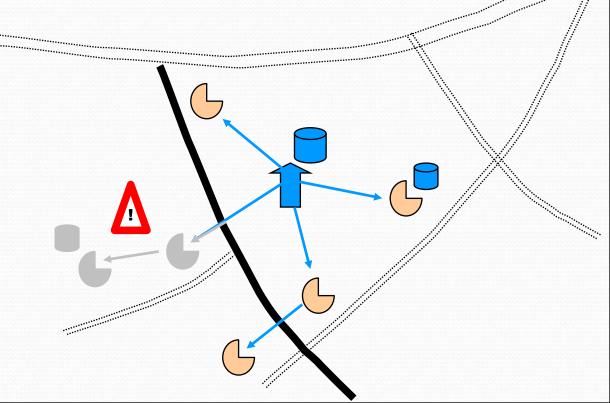
Goal

- To allow for immediate development in identified areas
- To develop appropriate, robust, affordable, scalable water supply infrastructure
- To allow for multi sourcing and interconnectivity at later stage
- To avoid interfering with the to-be-defined water policy
- To test a practical oriented solution


Water Policy - orientation

- Validation and limits of usage of groundwater
- Groundwater recharge and pollution control
- Surface water management
- Scope for usage and limitation for various sources (costs, energy efficiency, fragility, social issue...)
- Wastewater management
- Recycling of rainwater and wastewater
- Consumption control, regulation and equipment
- Quality requirement, hygiene and public health
- Local actions and regional actions

Present situation


- Water supply in cluster with people/ project connected as they come around a well or several wells
- Network in tree structure
- No usage of public areas but the shortest way

- Advantages :
 - > Cheap
 - Autonomous, no need for a public water service
 - Self responsibility of the users

Present situation

- Drawbacks:
 - Dependence on local resources, no or poor back-up
 - Poorly documented: risk of damage during further development
- Such network can conduct to supply collapse for all users
- No sharing or resources ("privatized system") become an issue for future development

Threats and opportunities

- Even without a water policy one can assume that
 - > For the time to come ground water will remain our main resource : cheaper, already available
 - The present extraction capacity is largely sufficient to cover our present and near future needs
 - Through time the degradation of groundwater will generate decline of some bore wells (dry or saline)
 - It will force the need for sharing resources
 - Other sources would then need to be used: Multi sourcing will become necessary

Sourcing from a practical point of view

- Immediate: locally and already made-available groundwater
- Medium term: groundwater from larger area (extra wells may become necessary)
- Longer term: rainwater, surface water or desalinated water

Sourcing from sustainable point of view -Groundwater

- Fluctuating through years from a quantitative point of view
 - Leakage through discontinuity in the upper structure
 - Multi layer tapped hence despondency to larger area
- Collapsing at a regional scale
 - > Over extraction
 - No regulation
- Deteriorating at regional scale from a qualitative point of view (salinity increase)
 - > Direct result of over extraction
 - Affected areas: beaches, Cuddalore formation along the coast
 - > Threaded areas: all areas depending on

Vanur formation

- Note: for Auroville, only the few deepest wells are concerned by the threat to Vanur, the Auroville beaches and the area around Auromodel by Cuddalore salinity intrusion.
- Upper strata directly replenished from Auroville plateau

Hence

- > Unsecured at a regional scale in the medium to long term
- "Reduced" insecurity possible locally through appropriate measures.

Sourcing from sustainable point of view Surface water

- Fluctuating quantitatively through years (Large rainfall fluctuation)
- Quantitatively sufficient to feed Auroville's population even in driest years
- Fully controllable locally:
 - One can catch and use what falls on one's head
- A perenial resource: Whatever the volume, it rains !
- But ... difficult to harvest because of few, scattered and heavy rains
- Sensitive to pollution
 - > Urban development as polluting factor
 - Atmospheric pollution
 - > Uncontrolled waste disposal
- Social issue : surface water replenish kolams and erys down the stream from

Auroville plateau

- Can be easily collected from a topographic point of view
- Can easily recharge water table on Auroville plateau at many places because of high infiltration rate through proper landscaping and greenwork
- Will increase as the city develops

Hence

- A secured resource but sensitive to many factor
- Must be fully integrated in planning and development at every step
- Can be positively managed through systematic infiltration and ...
 Matrimandir lake's feeding as water supply resource...

Sourcing from sustainable point of view Desalinization of seawater

- Very stable resource
- Single point source, easy to connect
- Highly dependant on power supply, heavy machineries , & human resources
- Social issue: Non sharing of resources is risky
- Practical issue: pipes passing through private land, hence difficult to secure
- Financial issue: who pays what and for how long (investment, running)?
- Ownership issue: existing proposal based on privately owned system

- Hence
 - A secured resource but sensitive to many factor
 - Because of its stability should be integrated in planning and development
- <u>Note</u>: Alternative such as desalinization of groundwater, much easier and cheaper, must be kept as an option

Objectives, phasing

• The main objective is to provide Auroville with a water supply system for:

- 1. Multi-sourcing for water supply including ground water, surface water and desalinization in order to ensure sustainability and guarantee the reliability of the system
- 2. Sharing of resources by proper distribution system at city level
- 3. Supply of water of appropriate quality, with scope for drinkability if judged adequate at end user level
- 4. Water accessibility at local level to allow for development
- 5. Development of accessible infrastructure for operation and maintenance along public space
- BUT...
 - > Multi sourcing is complex and will take time to realize
 - We are not enforced to realize it immediately
 - > Water supply system must follow the progress in planning, especially space allocation (grid)
 - > Water distribution at city level is not required for the time being or in the short term
 - Local distribution following appropriate and evolving design is most appropriate for the time being

Objectives, phasing

- So, we propose to focus on objectives 3 to 5 for the time being by:
 - Developing and upgrading local networks
 - Preparing the ground for
 - Interconnection and sharing at city level
 - Multi-sourcing

Identified areas for development

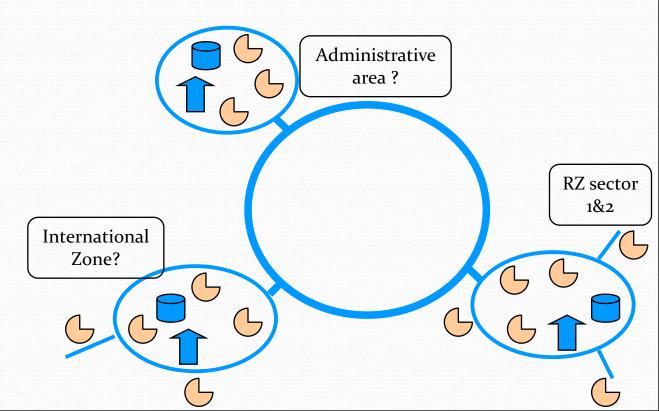
- Status :
 - Relatively well defined development plan
 - Existing water supply infrastructure and dedicated well
 - Unconnected wells available
- Residential Zone Sector 1 and 2
- Capacity for additional water extraction sufficient for the 5 + years to come
- Very poor piping and distribution system
- Extra connection will generate even more difficulties
- "Privatized" infrastructure (capital transfer?)
- "Administra tive area"

Industrial

zone

- Status
 - Hardly defined development plan
- Poor and unsecured water infrastructure
- Unconnected wells not identified
- Potential for water supply not clear (source?)
- Status
 - Unconnected well available
- Potential for extra water supply limited
- Hardly defined development plan
- Poor water infrastructure

Proposed solution: Step 1 – 2 years


- 1. Local Loop System
 - Feeding from several bore wells to a common sump at local level
 - Distribution at local level through a loop system

 Final "in-plot" water distribution pertain to the project holder

Proposed solution: Step 2 – 2 to 5 years

- 2. Interconnectivity through a central main feeder :
 - Supply of excess water to other areas => sharing of resources

Demand of water from other areas => access to larger resources

Proposed solution: Step 3 – 3 to 20 years

- 3. Connection to other sources through the central main feeder :
 - Multi sourcing : surface water, Matrimandir lake, desalinization...

securing water accessibility

Next steps

- 1. Definition of areas for infrastructure positioning
 - Planning group
- 2. Clarification on Administrative area and International Zone
 - Planning group
- 3. Dimensioning and specification
 - Study group
- 4. Costing
 - Study group
 - Deadline: end of March