COMMENT ON DRAFT REPORT OF HARALD KRAFT FROM AUROVILLE WATER SERVICE - HARVEST

## Calculations

## 1. BASIS OF CALCULATIONS

### 1.1. PRECIPITATION:**

| Auroville's period | Since 1911 |  |
| :--- | :--- | :--- |
| Average | 1.279 mm | 1.290 mm |
| Minimum | 731 mm | 626 mm |
| Maximum | 1.910 mm | 2.604 mm |

NOTE: the data on Auroville's period has been taken for the following calculation

### 1.2. EVAPORATION: (CLASS A PAN CUDDALORE)*

Winter:
Summer: $\quad 498 \mathrm{~mm}$
South-west Monsoon:
North-east Monsoon:
Average: $\quad 1.600 \mathrm{~mm}$

### 1.3. POTENTIAL EVAPOTRANSPIRATION:

POTENTIAL EVAPOTRANSPIRATION AT AUROVILLE STATION
As per Several Calculation Methods (mm)

| Method | Total |
| :--- | ---: |
| PET as per THORNTHWAITE's Method | 1682 |
| PET as per TURC's method | 1753 |
| Referencial ET as per HARGREAVE's method | 1679 |
| PET in CGWB 1984 report using Thornthwaite's Method | 1732 |
| Calibration of Penman PET using Thornthwaite PET (*) | 1880 |

(*) The Thornthwaite method is known to systematically underestimate PET in more arid regions and seasons. Thus the UEA/CRU provided an empirical adjustment factor using detailed data sets for Europe and Sudan, where Penman estimates were $\operatorname{PET}(\mathrm{P})=1.3$ * $\operatorname{PET}(\mathrm{T})-0.428 *$ PRECIP + 246
While Penman and Thornthwaite PETs remain comparable in humid areas, the above formula allows for greater adjustments in dry and semi-arid regions where the underestimation of Thornthwaite PET is highest.

PET: $1.880 \mathrm{~mm} / \mathrm{yr}$.
NOTE: The process of assessing Potential Evapotranspiration in Auroville by using Penman's equation and satellite image is ongoing and will allow giving much accurate estimate soon.

[^0]
## COMMENT ON DRAFT REPORT OF HARALD KRAFT FROM AUROVILLE WATER SERVICE - HARVEST

### 1.4. TEMPERATURE:*

Maximum: $\quad 43,8^{\circ} \mathrm{C}$ in May 1976
Minimum: $\quad 14,9^{\circ} \mathrm{C}$ in February 1974
Winter: $\quad$ Average $23,5-25,4^{\circ} \mathrm{C}$
March - May: Average $26,9-31,1^{\circ} \mathrm{C}$
SW Monsoon: Average 31,5-38, $5^{\circ} \mathrm{C}$
NE Monsoon: Average $27,6-23,8^{\circ} \mathrm{C}$

|  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean <br> Temperature'C' | 23.5 | 24.9 | 26.9 | 29.3 | 31.1 | 31.4 | 30.4 | 29.5 | 28.5 | 27.6 | 25.6 | 23.8 |

The yearly mean temperature fluctuation is of $7.9^{\circ} \mathrm{C}$.

### 1.5. RELATIVE HUMIDITY:*

|  | 8.00 a.m. | 4.00 p.m. |
| :--- | :--- | ---: |
| Winter: | $81 \%$ | $71 \%$ |
| SW Monsoon: | $66-81 \%$ | $64-79 \%$ |
| NO Monsoon: | $87 \%$ | $80 \%$ |

1.6. AREA

| Area |  |  |
| :---: | :---: | :---: |
| City Ac |  |  |
| Impervious area | 45\% | $2.21 \mathrm{~km}^{2}$ |
| Rooftops | 50\% | $1.10 \mathrm{~km}^{2}$ |
| Streets, Sidewalks and Public Squares | 50\% | $1.10 \mathrm{~km}^{2}$ |
| Open area | 55\% | $2.70 \mathrm{~km}^{2}$ |
| Garden area | 10\% | $0.27 \mathrm{~km}^{2}$ |
| Parks, Green Corridors | 90\% | 2.43 km² |
| Greenbelt |  |  |
| Agricultural area | 50\% | 7.36 km ${ }^{2}$ |
| Wooded area | 50\% | $7.36 \mathrm{~km}^{2}$ |
| City ( $02,5 \mathrm{~km}$ ) | $\mathrm{Ac}=$ | $4.91 \mathrm{~km}^{2}$ |
| Greenbelt ( $\boldsymbol{\square} \mathbf{5 , 0} \mathbf{~ k m}$ ) | $\mathrm{AGB}=$ | $14.73 \mathrm{~km}^{2}$ |
| Total | Atot $=$ | $19.63 \mathrm{~km}^{2}$ |

### 1.7. POPULATION

Final Population: $\mathbf{5 0 . 0 0 0}$ inhabitants

## 2. SAFE WATER YIELD FROM PRECIPITATION

### 2.1 PRECIPITATION

| Area | Rainwater Yield |  |  |
| :---: | :---: | :---: | :---: |
|  | Average M m ${ }^{3}$ | $\begin{gathered} \text { Minimum } \\ \mathrm{M} \mathrm{~m}^{3} \\ \hline \end{gathered}$ | $\begin{gathered} \hline \hline \text { Maximum } \\ \mathrm{M} \mathrm{~m}^{3} \end{gathered}$ |
| City ${ }^{\text {- }}$ |  |  |  |
| Impervious area | 2.83 | 1.61 | 4.22 |
| Rooftops | 1.41 | 0.81 | 2.11 |
| Streets, Sidewalks and Public Squares | 1.41 | 0.81 | 2.11 |
| Open area | 3.45 | 1.97 | 5.16 |
| Garden area | 0.35 | 0.20 | 0.52 |
| Parks, Green Corridors | 3.11 | 1.77 | 4.64 |
| Greenbelt |  |  |  |
| Agricultural area | 9.42 | 5.38 | 14.07 |
| Wooded area | 9.42 | 5.38 | 14.07 |
|  | 6.28 | 3.59 | 9.38 |
| Greenbelt ( $05,0 \mathrm{~km}$ ) | 18.84 | 10.76 | 28.13 |
| Total | 25.12 | 14.34 | 37.51 |

### 2.2 RUNOFF

The general approach about rainwater catchments in Auroville has been a zero runoff approach.
Considering the very promising result so far, it seems obvious that it is possible to improve the actual situation further, especially in view of the impervious area.

- Runoff is actually safely observed in Auroville above 120 mm of rainfall per day. it generates an average runoff of 0.885 Mm 3 per year, with a minimum of $0 \mathrm{Mm} 3 / y$ and a maximum of $4.634 \mathrm{Mm} 3 / \mathrm{y}$.
- Considering the ground reality (poor landscaped areas, private lands) we can very safely assume that it will rise at least to 150 mm of rainfall per day.
- Frequency of Runoff as per actual conditions: 3 days every 2 years.
- As per future expected conditions: 1day every 2 years (for unpaved area).
- Frequency of heavy runoff (above 200 mm of daily rainfall): 1 day every 6 years.
- Maximum observed daily rainfall: 324 mm
- Average rainy days per year: 62
- Average runoff per year as per expected conditions on unpaved area: 23 mm ( $2 \%$ of average yearly rainfall).
- Maximum yearly runoff as per expected conditions on unpaved area: 174 mm (13\% of average yearly rainfall).
- Safe minimum daily rainfall to get runoff on cultivated lands: 100 mm
- Safe Minimum daily rainfall to get runoff from roof top with appropriate infiltration structures: 100 mm
- Minimum daily rainfall to get runoff on streets: 30 mm


## COMMENT ON DRAFT REPORT OF HARALD KRAFT FROM AUROVILLE WATER SERVICE - HARVEST

The following tables show a progression linked to appropriate surface water management devices.

### 2.2.1 Yearly runoff as per combined daily rainfall data (1968-2002) and improved facilities

## Unpaved area:

- Garden, parks and wooded area: runoff start above 150 mm of rainfall per day (the difference is infiltrated)
- Agriculture area: runoff start above 100 mm of rainfall per day (the difference is infiltrated).

| Runoff on open area in meters per year |  |  |  |
| ---: | ---: | ---: | ---: |
|  | Average | Minimum | Maximum |
| Green area | 0.023 | 0.000 | 0.174 |
| Agriculture area | 0.067 | 0.000 | 0.316 |

## Impervious area:

- Rooftop: properly collected and infiltrated runoff start above 100 mm of rainfall per day (the difference is infiltrated)
- Streets: runoff start above 20 mm of rainfall per day.

Runoff on paved area in meters per year

|  | Average | Minimum | Maximum |
| ---: | ---: | ---: | ---: |
| Streets | 0.743 | 0.172 | 1.547 |
| Rooftop collected | 0.023 | 0.000 | 0.174 |

## Note:

- The runoff as been calculated with rainfall above the starting limit for the streets ( $20 \mathrm{~mm} / \mathrm{d}$ ), and with the potential runoff (means the part of the rainfall above the runoff limit) for the other areas.
- As per practical experiments in Auroville, it is simple and cheap to limit to a very large extend the runoff from the paved area (a part of the streets, parking and other areas used by petrol engine because of pollution). Hence it is possible to reduce the runoff from the city and adjust the drainage and storage facilities accordingly.
- As per practical experiments in Auroville, it is simple and cheap to limit to a very large extend the runoff from the paved area (a part of the streets, parking and other areas used by petrol engine because of pollution). Hence, it is possible to reduce the runoff from the city and adjust the drainage and storage facilities accordingly. In that view, it is expected to catch rainfall up to 100 mm per day. For the Roof top area.


### 2.2.4 Resulting Runoff

## COMMENT ON DRAFT REPORT OF HARALD KRAFT FROM AUROVILLE WATER SERVICE - HARVEST

| Area | Runoff Final |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Runoff Coefficient \% | Average $\mathrm{Mm}^{3}$ | $\begin{gathered} \text { Minimum } \\ \mathrm{M} \mathrm{~m}^{3} \end{gathered}$ | $\underset{\mathrm{m}^{3}}{-\mathrm{Maximum}^{\mathrm{M}}}$ |
| City |  |  |  |  |
| Impervious area |  | 0.85 | 0.19 | 1.92 |
| Rooftops | 5\% | 0.03 | 0.00 | 0.19 |
| Streets, Sidewalks and Public Squares | 32\% | 0.82 | 0.19 | 1.73 |
| Open area |  | 0.06 | 0.00 | 0.47 |
| Garden area | 2\% | 0.01 | 0.00 | 0.05 |
| Parks, Green Corridors | 2\% | 0.06 | 0.00 | 0.42 |
| Greenbelt |  |  |  |  |
| Agricultural area | 5\% | 0.50 | 0.00 | 2.33 |
| Wooded area | 2\% | 0.17 | 0.00 | 1.28 |
| City ( $02,5 \mathrm{~km}$ ) |  | 0.91 | 0.19 | 2.39 |
| Greenbelt ( $¢ 5,0 \mathrm{~km}$ ) |  | 0.67 | 0.00 | 3.61 |
| Total |  | 1.58 | 0.19 | 6.00 |

### 2.3 SEWAGE FLOW

Day $\quad 50.000 \mathrm{P} \times 159 \mathrm{~L} / \mathrm{P}=7,950 \mathrm{~m}^{3} / \mathrm{d} \quad=0.008 \mathrm{M} \mathrm{m}^{3}$
Month $\quad 7.950 \mathrm{~m}^{3} \times 30 \mathrm{~d} /$ month $=238,500 \mathrm{~m}^{3} / \mathrm{month} \quad=0.238 \mathrm{M} \mathrm{m}^{3}$
Year $\quad 7.950 \mathrm{~m}^{3} \times 365 \mathrm{~d} / \mathrm{a}=\mathbf{2 , 9 0 1 , 7 5 0} \mathrm{m}^{3} /$ year $\quad=2.900 \mathrm{M} \mathrm{m}^{3}$

### 2.4 WATER DEMAND

2.4.1 Water Demand for Municipal Supplies in India

|  | Consumption <br> Icd | Reusable <br> part \% | Reusab/e <br> part Icd |
| :--- | ---: | ---: | ---: |
| Domestic use | 135 | 80 | 108 |
| Industrial use | 50 | 70 | 35 |
| Commercial use (factories, offices, | 20 | 80 | 16 |
| hospitals, hostels, restaurants, schools) <br> Public use (gardening, park, road, public <br> fontain) |  |  | 0 |
| Wastes | 10 | 0 | 0 |
| Average Municipal consumption | 55 | 0 | 0 |

### 2.4.3 Equivalence for Auroville Population

|  | Equivalent Water Demand for Auroville City |  |
| :---: | :---: | :---: |
|  | Consumption $M m 3 / y$ | Reusable part M m3/y |
| Domestic use | 2.46 | 1.97 |
| Industrial use | 0.91 | 0.64 |
| Commercial use (factories, offices, hospitals, hostels, restaurants, schools) | 0.37 | 0.64 0.29 |
| Public use (gardening, park, road, public fontain) | 0.37 0.18 | 0.29 0.00 |
| Wastes | 1.00 | 0.00 |
| Average Municipal consumption | 4.92 | 2.90 |

### 2.4.4 Estimated Actual Water Demand in Auroville

|  | Consumption <br> Icd |
| :--- | ---: |
| Domestic use | 185 |
| Industrial \& Commercial use | 31 |
| Public use (gardening, park, road, <br> public fontain) | 600 |
| Wastes (10\%) | 82 |
| Average Municipal consumption | $\mathbf{8 9 8}$ |

### 2.4.5 Irrigation Demand

The water demand from the vegetation in the parks and the greenbelt is equivalent to the precipitation minus the runoff.

No other additional irrigation is planned.
Note: While being suitable for the Greenbelt's forest area and part of the park in the city area, does it fit with all Parks and Gardens of the City Area as well as the agricultural part? If not, then the water consumption must be assessed.

The water demand for gardens and agricultural areas is equivalent to the potential evapotranspiration.

## COMMENT ON DRAFT REPORT OF HARALD KRAFT FROM AUROVILLE WATER SERVICE - HARVEST

## NOTE:

- The water requirement for paddy is of 120 cm when groundnut need 45 cm , gram 30 cm and vegetables about 60 cm , this for one culture only. To optimise the land use means to utilize the land for several cultures per year: usually three to four (ex: rice, groundnut, gram, green manure). Hence, the irrigation demand would be about 200 cm per year.
- The PET value is from Thornthwaite corrected formula. By looking to Penman's equation, more accurate, we obtain a PET value of 2016 mm for closed grain crops, which generate a water deficit even more important. To simplify the comparison, the table below is as per Harald Kraft calculation.

|  |  | As per Daily Rainfall |  |  |
| :--- | :---: | ---: | ---: | ---: |
| Water Balance |  | Average | Minimum | Maximum |
| Potential Evapotranspiration | m | 1.88 | 1.88 | 1.88 |
| PRECIPITATION mm | m | 1.28 | 0.73 | 1.91 |
| RUNOFF mm | m | 0.07 | 0.00 | 0.31 |
| Water Deficit | $\mathbf{m}$ | $\mathbf{0 . 6 7}$ | $\mathbf{1 . 1 5}$ | $\mathbf{0 . 2 8}$ |
|  |  |  |  |  |
| Irrigation Demand |  |  |  |  |
| Garden Area | $\mathrm{M} \mathrm{m}^{\mathbf{3}}$ | 0.18 | 0.31 | 0.08 |
| Agricultural Areas | $\mathbf{M ~ m}^{\mathbf{3}}$ | 4.91 | 8.46 | 2.07 |
| Total Irrigation Demand | $\mathbf{M ~ m}^{\mathbf{3}}$ | $\mathbf{5 . 0 9}$ | $\mathbf{8 . 7 7}$ | $\mathbf{2 . 1 4}$ |

## 3. WATER BALANCE

|  | As per Optimized situation |  |  |
| :--- | ---: | ---: | ---: |
|  | For <br> Average <br> Rainfall M <br> $\mathrm{m}^{3} / \mathrm{a}$ | For <br> Minimum <br> Rainfall M <br> $\mathrm{m}^{3} / \mathrm{a}$ | For <br> Maximum <br> Rainfall M <br> $\mathrm{m}^{3 / a}$ |
| Water Demand | 4.92 | 4.92 | 4.92 |
| Municipal Consumption | 5.09 | 8.77 | 2.14 |
| Irrigation | $\mathbf{1 0 . 0 1}$ | $\mathbf{1 3 . 7 0}$ | $\mathbf{7 . 0 7}$ |
| Total Water Demand |  |  |  |
|  | 0.03 | 0.00 | 0.19 |
| Safe Water Yield | 1.55 | 0.19 | 5.81 |
| Rooftops | 2.90 | 2.90 | 2.90 |
| Surface | 4.48 | $\mathbf{3 . 0 9}$ | $\mathbf{8 . 9 0}$ |
| Sewage | $\mathbf{- 5 . 5 3}$ | $\mathbf{- 1 0 . 6 1}$ | $\mathbf{1 . 8 3}$ |
| Total Safe Yield |  |  |  |
| Water Balance |  |  |  |

### 3.1 DRINKING WATER SUPPLY

The precipitation distribution in the rainy season is as follows:

SW Monsoon
NE Monsoon

Average 406 mm 809 mm

Minimum
Maximum
1071 mm
1869 mm

|  | As per Optimized situation |  |  |
| :--- | ---: | ---: | ---: |
| Safe Water Yield | Average <br> $\mathbf{M ~ m} \mathbf{~ 3}^{3} \mathbf{/ a}$ | Minimum <br> $\mathbf{M ~ m}^{\mathbf{3}} / \mathbf{a}$ | Maximum <br> $\mathbf{M ~ m}^{3} / \mathbf{a}$ |
| Municipal Water Demand | $\mathbf{4 . 9 2}$ | $\mathbf{4 . 9 2}$ | $\mathbf{4 . 9 2}$ |
| Rainwater from the Rooftops | 0.03 | 0.00 | 0.19 |
| Rainwater from the Streets | 0.82 | 0.19 | 1.73 |
| Rainwater from the Open Areas | 0.06 | 0.00 | 0.47 |
| Green Belt Agricultural areas | 0.50 | 0.00 | 2.33 |
| Green Belt Wooded areas | 0.17 | 0.00 | 1.28 |
| Total Rainwater Runoff | $\mathbf{1 . 5 8}$ | $\mathbf{0 . 1 9}$ | $\mathbf{6 . 0 0}$ |
| Water Balance | $\mathbf{- 3 . 3 5}$ | $\mathbf{- 4 . 7 3}$ | $\mathbf{1 . 0 8}$ |
|  | $\mathbf{- 6 8 \%}$ | $\mathbf{- 9 6 \%}$ | $\mathbf{2 2} \%$ |

The precipitation distribution in the rainy season is as follow:

|  |  | Average | Minimum | Maximum |
| :--- | :---: | :---: | :--- | ---: |
| SW Monsoon | $31 \%$ | 385 mm | 158 mm | 659 mm |
| NE Monsoon | $61 \%$ | 771 mm | 298 mm | 1386 mm |
| Maximum precipitation of 1.654 mm in 4 months |  |  |  |  |

Maximum precipitation of 1.654 mm in 4 months
Maximum monthly precipitation of 748 mm
Maximum runoff per month:
From roof top of $549 \mathrm{~mm}, 466$ for streets, 255 mm on cultivated land and 174 mm on forest and other lands
Maximum runoff during NE Monsoon:
From roof top of $919 \mathrm{~mm}, 786 \mathrm{~mm}$ for streets, 316 mm on cultivated land and 174 mm on forest and other lands.

|  | As per Optimized Situation |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Catchment Area | Area | Runoff <br> Coeff. | Ared | Runoff <br> max. <br> Month | Runoff <br> max NE- <br> Monsoon |
|  | $\mathrm{km}^{2}$ | $\%$ | $\mathrm{~km}^{2}$ | $\mathrm{M} \mathrm{m}^{3}$ | $\mathrm{M} \mathrm{m}^{3}$ |
| Rooftops | 1.10 | $5 \%$ | 0.06 | 0.03 | 0.08 |
| Streets | 1.10 | $32 \%$ | 0.36 | 0.15 | 0.46 |
| Open Areas | 2.70 | $2 \%$ | 0.05 | 0.02 | 0.06 |
| Agricultural areas | 7.36 | $5 \%$ | 0.39 | 0.17 | 0.50 |
| Wooded areas | 7.36 | $2 \%$ | 0.13 | 0.06 | 0.17 |
| Total | $\mathbf{1 9 . 6 3}$ |  | $\mathbf{0 . 9 9}$ | $\mathbf{0 . 4 3}$ | $\mathbf{1 . 2 8}$ |

## 4. REQUIRED STORAGE VOLUME IN THE GREENBELT

As per Indian Meteorological Department, the Probable Maximum Precipitation for our area is of 60 cm in 2 days and 70 cm in 3 days.
Anyhow, it odes not make sense to try to catch any imaginable quantity of rainfall.
Much more realistic is to try to define suitable size of storage facilities as per available data.
According to monthly rainfall data, we get the following information:

- During one month, rainfalls above 600 mm happen only four times in 35 years. Hence, we

- During NE Monsoon that 600 mm is a suitable maximum figure.

Hence, we may safely consider the 1300 mm happen only three times in 35 years.

- For a 4 months period, rainfalls above 135 mm is a suitable maximum figure.

Hence, we may safely consider that 1350 mm is a suitable only three times in 35 years.
By using the Corrected data from daily rainfall minimized at an acceptable level (4 runoffs not included for 35 years), we obtain the following result:

Maximum Precipitation - NE Monsoon:
Average Max Monthly Precipitation NE Monsoon: $\quad 1,300 \mathrm{~mm}$
Required Maximum Capacity for Infiltration Trenches:

$$
Q_{i n f}=
$$

$$
14,239 \mathrm{~m}^{3} / \mathrm{d}
$$

Required Storage Volume in the Greenbelt:

$$
\min V_{G B}=A_{\text {red }} \times 433
$$

$$
\max V_{G B}=A_{\mathrm{red}} \times 1,300 \mathrm{~mm}
$$

|  | Max runoff <br> per month <br> m | Max runoff <br> NE Monsoon <br> m |
| ---: | :---: | :---: |
| Rooftop <br> collected | 0.140 | 0.140 |
| Streets | 0.580 | 0.930 |
| Green area | 0.110 | 0.120 |

$0.427 \mathrm{M} \mathrm{m}^{3}$
$1.281 \mathrm{M} \mathrm{m}^{3}$

To collect the entire runoff of Auroville the storage facilities in the Green Belt should be sized between 2.90 Mm 3 and 3.5 Mm 3

# COMMENT ON DRAFT REPORT OF HARALD KRAFT FROM AUROVILLE WATER SERVICE - HARVEST 

## 5. REQUIRED STORAGE VOLUME FOR THE CENTRAL LAKE AROUND THE MATRIMANDIR

Equivalent volume of lake for 40 days retention time
Chosen characteristics for the central lake at the Matrimandir
Surface area
Inner Embankment
Outer Embankment
Area of lake bottom
Slope of Embankment
Maximum depth
Average depth
Volume
Minimum retention time

$$
\begin{array}{ll}
\mathrm{A}_{\text {tot }} & =181.100 \mathrm{~m}^{2} \\
\mathrm{~A}_{\mathrm{i}} & =36.377 \mathrm{~m}^{2} \\
\mathrm{~A}_{\mathrm{o}} & =55.253 \mathrm{~m}^{2} \\
\mathrm{~A}_{\mathrm{b}} & =94.173 \mathrm{~m}^{2} \\
1: \mathrm{n} & =1: 3 \\
\mathrm{t} & =10 \mathrm{~m} \\
\mathrm{t}_{\mathrm{m}} & =7,60 \mathrm{~m} \\
\mathrm{~V}_{\mathrm{n}} & =1.376 .369 \mathrm{~m}^{3} \\
\mathrm{t}_{\mathrm{r}} & =40 \text { days }
\end{array}
$$

## Inlet Filter

Inflow
Filter velocity
Minimum filter size
Chosen
Alternative
Outlet Filter
Filter velocity
Minimum filter size
Chosen

$$
\begin{aligned}
& \max Q_{d}=34.400 \mathrm{~m}^{3} / \mathrm{d} \\
& V_{F}=0,2 \mathrm{~m} / \mathrm{h}=4,8 \mathrm{~m} / \mathrm{d} \\
& A_{F}=34.400 \mathrm{~m}^{3} / \mathrm{d} / 4,8 \mathrm{~m} / \mathrm{d}=7.167 \mathrm{~m}^{2} \\
& 72 \mathrm{~m} \times 100 \mathrm{~m}=7.200 \mathrm{~m}^{2} \\
& \varnothing 96 \\
& 10 \mathrm{~m} / \mathrm{h}=240 \mathrm{~m} / \mathrm{d} \\
& A_{F}=34.400 \mathrm{~m}^{3} / \mathrm{d} / 240=143 \mathrm{~m}^{2} \\
& 10 \mathrm{~m} \times 15 \mathrm{~m}
\end{aligned}
$$

## 6. INFIL TRATION AND EVAPORATION LOSSES IN THE LAKE

### 1.8. 6.1 INFILTRATION LOSSES IN THE CENTRAL LAKE

Losses through infiltration with a sealant made of 1.000 mm vacuum-sealed natural clay:
Embankments

$$
\begin{aligned}
& Q_{B}=A_{t o t} \times k_{\mathrm{f}} \times H / L=3,5 * 10^{-11} \mathrm{~m} / \mathrm{s} \times 91.630 \mathrm{~m}^{2} \times 5 \mathrm{~m} / 0,1 \mathrm{~m} \\
& \mathrm{Q}_{\mathrm{B}} \quad=0,0002 \mathrm{~m}^{3} / \mathrm{s}=13,85 \mathrm{~m}^{3} / \mathrm{d}=5.057 \mathrm{~m}^{3} / \mathrm{yr}
\end{aligned}
$$

Bottom of Lake

$$
\begin{array}{ll}
\mathrm{Q}_{\mathrm{S}} & =94.173 \mathrm{~m}^{2} \times 3,5 \times 10^{-11} \mathrm{~m} / \mathrm{s} \times 10 \mathrm{~m} / 0,1 \mathrm{~m}=0,0003 \mathrm{~m}^{3} / \mathrm{s} \\
\mathrm{Q}_{\mathrm{s}} & =28,47 \mathrm{~m}^{3} / \mathrm{d}=10.394 \mathrm{~m}^{3} / \mathrm{a} \\
\mathrm{Q}_{\mathrm{INF}} & =15.450 \mathrm{~m}^{3} / \mathrm{yr} .
\end{array}
$$

## Evaporation Losses

## Evaporation:

Deficit:

$$
\begin{array}{rlr}
P_{\mathrm{ave}} & = & 1.300 \mathrm{~mm} \\
\mathrm{E}_{\mathrm{ave}} & = & 1.600 \mathrm{~mm} \\
\mathrm{D} & = & 300 \mathrm{~mm} \\
& = & 181.000 \mathrm{~m}^{2} \\
Q_{V} & =A \times D=181.000 \mathrm{~m}^{2} \times 0,3 \mathrm{~m} \\
\mathrm{Q}_{\mathrm{V}} & = & 54.300 \mathrm{~m}^{3} / \mathrm{yr}
\end{array}
$$

Surface area:
Evaporation Loss:

## Total Losses in Lake through Infiltration and Evaporation

# COMMENT ON DRAFT REPORT OF HARALD KRAFT FROM AUROVILLE WATER SERVICE - HARVEST 

$$
\mathrm{Q}_{\mathrm{EI}}=69.750 \mathrm{~m}^{3} / \mathrm{yr} . \cong 0,07 \mathrm{M} \mathrm{~m}^{3} / \mathrm{yr} .
$$

This corresponds to about $5 \%$ of the storage volume and a sinking of the water level of around $38,5 \mathrm{~cm}$, or about $3,2 \mathrm{~cm}$ on the average each month throughout the year.

## Estimation of the Losses in Storage in the Greenbelt

Storage Volume

| min $\mathrm{V}_{\mathrm{GB}}$ | $=1,033 \mathrm{M} \mathrm{m}^{3}$ |
| :--- | :--- |
| $\max \mathrm{~V}_{\mathrm{GB}}=$ | $3,983 \mathrm{M} \mathrm{m}^{3}$ |
| Average Depth | $=5,0 \mathrm{~m}$ |
| Surface Area | $=206.600 \mathrm{~m}^{2}$ |
| $\min A_{G B}$ | $=796.600 \mathrm{~m}^{2}$ |
| $\max \mathrm{~A}_{\mathrm{GB}}$ | $=0,239 \mathrm{M} \mathrm{m}^{3}$ |
| Evaporation Losses | $=0,062 \mathrm{M} \mathrm{m}^{3}$ |

Infiltration losses when sealing with 10 mm vacuum.sealed natural clay
$\min Q_{I N F}=1,75 \times 10^{-9} \mathrm{~m} / \mathrm{s} \times 206.600 \mathrm{~m}^{2} \times 3.600 \mathrm{~s} \times 24 \mathrm{~h}=31 \mathrm{~m}^{3} / \mathrm{d}=11.315 \mathrm{~m}^{3} / \mathrm{yr}$.
$\max Q_{\text {INF }}=1,75 \times 10^{-9} \mathrm{~m} / \mathrm{s} \times 796.600 \mathrm{~m}^{2} \times 3.600 \mathrm{~s} \times 24 \mathrm{~h}=120 \mathrm{~m}^{3} / \mathrm{d}=43.963 \mathrm{~m}^{3} / \mathrm{yr}$.
Total Losses to Storage in the Greenbelt
$\min Q_{E I} \quad=0,073 \mathrm{M} \mathrm{m}^{3}$
$\max Q_{E I} \quad=0,283 \mathrm{M} \mathrm{m}^{3}$

## Total Storage Losses

$$
\begin{aligned}
\min \mathrm{Q}_{\mathrm{tEI}}=0,073+0,07 & =0,143 \mathrm{M} \mathrm{~m}^{3} / \mathrm{yr} . \\
& =3,7 \%{\mathrm{of} \mathrm{average} \mathrm{annual} \mathrm{discharge}\left(3,845 \mathrm{M} \mathrm{~m}^{3} / \mathrm{yr} .\right)}_{\max \mathrm{Q}_{\mathrm{tEI}}=0,283+0,07}=0,353 \mathrm{M} \mathrm{~m}^{3} / \mathrm{yr} . \\
& =9,2 \% \text { of average annual discharge }\left(3,845 \mathrm{M} \mathrm{~m}^{3} / \mathrm{yr} .\right)
\end{aligned}
$$

## 7. FACILITIES FOR THE CONVEYANCE OF SURFACE WATER

### 1.9. 7.1 ANNUAL OUTPUT

$Q_{\mathrm{fl}}=2,07-5,6 \mathrm{M} \mathrm{m}^{3} / \mathrm{yr}$.
$Q_{\text {max }}=33.600 \mathrm{~m}^{3} / \mathrm{d}=388,9 \mathrm{l} / \mathrm{s}$
The maximum capacity required for the pumps is calculated from the output at maximum water level in the lake and the corresponding vertical rise according to the following equation:

$$
\begin{aligned}
& P_{P}=\frac{\rho g Q_{P \text { max }} H}{1.000 \eta}(7-1) \\
& \rho \quad=1.000 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{H} \quad=25 \mathrm{~m} \\
& Q_{\mathrm{pmax}} \quad=400 \mathrm{I} / \mathrm{s}=1.440 \mathrm{~m}^{3} / \mathrm{h}=34.560 \mathrm{~m}^{3} / \mathrm{d} \\
& \mathrm{H} \quad=0,61 \\
& P_{P}=\frac{1 \mathrm{~kg} / 1 \cdot 9,81 \mathrm{~m} / \mathrm{s}^{2} \cdot 400 \mathrm{l} / \mathrm{s} \cdot 25 \mathrm{~m}}{1.000 \cdot 0,61}=160,83
\end{aligned}
$$

According to manufacturer's instructions, an increase of about $20 \%$ above the required pump capicity, $\mathrm{P}_{\mathrm{P}}$, is necessary as a safety measure for the estimation of the minimum required motor capacity, $\mathrm{P}_{\mathrm{M}}$ :
$P_{M}=1,2 P_{P}=192,99 \mathrm{~kW}$


[^0]:    * Sources: Regional Weather Station Pondicherry, Auroville Station-Certitude, PWD Pondicherry, Auroville Station-Harvest

