Calculations

1. BASIS OF CALCULATIONS

1.1. PRECIPITATION:**

Auroville's pe	eriod	Since 1911
Average	1.279 mm	1.290 mm
Minimum	731 mm	626 mm
Maximum	1.910 mm	2.604 mm

NOTE: the data on Auroville's period has been taken for the following calculation

1.2. EVAPORATION: (CLASS A PAN CUDDALORE)*

Winter:	237 mm
Summer:	498 mm
South-west Monsoon:	694 mm
North-east Monsoon:	301 mm
Average:	1.600 mm

1.3. POTENTIAL EVAPOTRANSPIRATION:

POTENTIAL EVAPOTRANSPIRATION AT AUROVILLE STATION As per Several Calculation Methods (mm)

Method	Total
PET as per THORNTHWAITE's Method	1682
PET as per TURC's method	1753
Referencial ET as per HARGREAVE's method	1679
PET in CGWB 1984 report using Thornthwaite's Method	1732
Calibration of Penman PET using Thornthwaite PET (*)	1880

(*) The Thornthwaite method is known to systematically underestimate PET in more arid regions and seasons. Thus the UEA/CRU provided an empirical adjustment factor using detailed data sets for Europe and Sudan, where Penman estimates were

PET(P) = 1.3 * PET(T) - 0.428 * PRECIP + 246

While Penman and Thornthwaite PETs remain comparable in humid areas, the above formula allows for greater adjustments in dry and semi-arid regions where the underestimation of Thornthwaite PET is highest.

PET: 1.880 mm/yr.

NOTE: The process of assessing Potential Evapotranspiration in Auroville by using Penman's equation and satellite image is ongoing and will allow giving much accurate estimate soon.

AWS-Harvest

page 1/12

^{*} Sources: Regional Weather Station Pondicherry, Auroville Station-Certitude, PWD Pondicherry, Auroville Station-Harvest

1.4. TEMPERATURE:*

9

Maximum:	43,8°C in May 1976
Minimum:	14,9 °C in February 1974
Winter:	Average 23,5 – 25,4°C
March - May:	Average 26,9 – 31,1°C
SW Monsoon:	Average 31,5 – 38,5°C
NE Monsoon:	Average 27,6 – 23,8°C

•	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mean	23.5	24.9	26.9	29.3	31.1	31.4	30.4	29.5	28.5	27.6	25.6	23.8
Temperature'C'												to constant 15 1622

The yearly mean temperature fluctuation is of 7.9°C.

1.5. RELATIVE HUMIDITY:*

8 B	8.00 a.m.	4.00 p.m.
Winter:	81 %	71 %
SW Monsoon:	66 – 81 %	64 – 79 %
NO Monsoon:	87 %	80 %

1.6. AREA

Area		
		E.
City Ac		
Impervious area	45%	2.21 km ²
Rooftops	50%	1.10 km ²
Streets, Sidewalks and Public Squares	50%	1.10 km ²
Open area	55%	2.70 km ²
Garden area	10%	0.27 km ²
Parks, Green Corridors	90%	2.43 km ²
Greenbelt		
Agricultural area	50%	7.36 km ²
Wooded area	50%	7.36 km ²
City (Ø 2,5 km)	Ac =	4.91 km ²
Greenbelt (Ø 5,0 km)	AGB =	14.73 km ²
Total	Atot =	19.63 km ²

1.7. POPULATION

Final Population: 50.000 inhabitants

AWS-Harvest

page 2/12

2. SAFE WATER YIELD FROM PRECIPITATION

2.1 PRECIPITATION

Area	Rainwate	r Yield	
	Average	Minimum	Maximum
	M m ³	M m ³	M m ³
City ·			
Impervious area	2.83	1.61	4.22
Rooftops	1.41	0.81	2.11
Streets, Sidewalks and Public Squares	1.41	0.81	2.11
Open area	3.45	1.97	5.16
Garden area	0.35	0.20	0.52
Parks, Green Corridors	3.11	1.77	4.64
Greenbelt			
Agricultural area	9.42	5.38	14.07
Wooded area	9.42	5.38	14.07
City (Ø 2,5 km)	6.28	3.59	9.38
Greenbelt (Ø 5,0 km)	18.84	10.76	28.13
Total	25.12	14.34	37.51

2.2 RUNOFF

The general approach about rainwater catchments in Auroville has been a zero runoff approach.

Considering the very promising result so far, it seems obvious that it is possible to improve the actual situation further, especially in view of the impervious area.

- Runoff is actually safely observed in Auroville above 120mm of rainfall per day. it generates an average runoff of 0.885Mm3 per year, with a minimum of 0Mm3/y and a maximum of 4.634Mm3/y.
- Considering the ground reality (poor landscaped areas, private lands) we can very safely assume that it will rise at least to 150mm of rainfall per day.
- Frequency of Runoff as per actual conditions: 3 days every 2 years.
- As per future expected conditions: 1day every 2 years (for unpaved area).
- Frequency of heavy runoff (above 200mm of daily rainfall): 1 day every 6 years.
- Maximum observed daily rainfall: 324mm
- Average rainy days per year: 62
- Average runoff per year as per expected conditions on unpaved area: 23mm (2% of average yearly rainfall).
- Maximum yearly runoff as per expected conditions on unpaved area: 174 mm (13% of average yearly rainfall).
- Safe minimum daily rainfall to get runoff on cultivated lands: 100mm
- Safe Minimum daily rainfall to get runoff from roof top with appropriate infiltration structures: 100mm
- Minimum daily rainfall to get runoff on streets: 30mm

AWS-Harvest

The following tables show a progression linked to appropriate surface water management devices.

2.2.1 Yearly runoff as per combined daily rainfall data (1968-2002) and improved facilities

Unpaved area:

- Garden, parks and wooded area: runoff start above 150mm of rainfall per day (the difference is infiltrated)
- Agriculture area: runoff start above 100mm of rainfall per day (the difference is infiltrated).

Runoff on open area in meters per year						
	Average	Minimum	Maximum			
Green area	0.023	0.000	0.174			
Agriculture area	0.067	0.000	0.316			

Impervious area:

- Rooftop: properly collected and infiltrated runoff start above 100mm of rainfall per day (the difference is infiltrated)
- Streets: runoff start above 20mm of rainfall per day.

Runoff on paved area in meters per year						
	Average	Minimum	Maximum			
Streets	0.743	0.172	1.547			
Rooftop collected	0.023	0.000	0.174			

Note:

- The runoff as been calculated with rainfall above the starting limit for the streets (20mm/d), and with the potential runoff (means the part of the rainfall above the runoff limit) for the other areas.
- As per practical experiments in Auroville, it is simple and cheap to limit to a very large extend the runoff from the paved area (a part of the streets, parking and other areas used by petrol engine because of pollution). Hence it is possible to reduce the runoff from the city and adjust the drainage and storage facilities accordingly.
- As per practical experiments in Auroville, it is simple and cheap to limit to a very large extend the runoff from the paved area (a part of the streets, parking and other areas used by petrol engine because of pollution). Hence, it is possible to reduce the runoff from the city and adjust the drainage and storage facilities accordingly. In that view, it is expected to catch rainfall up to 100mm per day. For the Roof top area.

2.2.4 Resulting Runoff

Area	Runoff Final			
	Runoff	Average	Minimum	Maximum M
	Coefficient %	M m ³	M m ³	m ³
City				
Impervious area		0.85	0.19	1.92
Rooftops	5%	0.03	0.00	0.19
Streets, Sidewalks and Public Squares	32%	0.82	0.19	1.73
	>			
Open area		0.06	0.00	0.47
Garden area	2%	0.01	0.00	0.05
Parks, Green Corridors	2%	0.06	0.00	0.42
Greenbelt				0.12
Agricultural area	5%	0.50	0.00	2.33
Wooded area	2%	0.17	0.00	1.28
City (Ø 2,5 km)	×	0.91	0.19	2 39
Greenbelt (Ø 5,0 km)		0.67	0.00	3.61
Total		1.58	0.19	6.00

2.3 SEWAGE FLOW

Year	7.950 m³ x 365 d/a	= 2	,901,750 m³/year	= 2.900 M m³
Month	7.950 m ³ x 30 d/month	=	238,500 m ³ /month	= 0.238 M m ³
Day	50.000 P x 159 L/P	=	7,950 m³/d	= 0.008 M m ³

2.4 WATER DEMAND

2.4.1 Water Demand for Municipal Supplies in India

	Consumption Icd	Reusable part %	Reusable part lcd
Domestic use	135	80	108
Industrial use	50	70	35
Commercial use (factories, offices,		10	00
hospitals, hostels, restaurants, schools) Public use (gardening, park, road, public	20	80	16
fontain)	10	0	0
Wastes	55	Ő	0
Average Municipal consumption	270		159

2.4.3 Equivalence for Auroville Population

	Equivalent Water Demand for Auroville City		
	Consumption M m3/y	Reusable part M m3/v	
Domestic use	2.46	1.97	
Industrial use	0.91	0.64	
Commercial use (factories, offices,			
hospitals, hostels, restaurants, schools)	0.37	0.20	
Public use (gardening, park, road,	0.37	0.29	
public fontain)	0.18	0.00	
Wastes	1.00	0.00	
Average Municipal consumption	4.92	2.90	

2.4.4 Estimated Actual Water Demand in Auroville

	Consumption Icd
Domestic use	185
Industrial & Commercial use	31
Public use (gardening, park, road, public fontain)	600
Wastes (10%)	82
Average Municipal consumption	898

2.4.5 Irrigation Demand

The water demand from the vegetation in the parks and the greenbelt is equivalent to the precipitation minus the runoff.

No other additional irrigation is planned.

<u>Note:</u> While being suitable for the Greenbelt's forest area and part of the park in the city area, does it fit with all Parks and Gardens of the City Area as well as the agricultural part? If not, then the water consumption must be assessed.

The water demand for gardens and agricultural areas is equivalent to the potential evapotranspiration.

• The water requirement for paddy is of 120cm when groundnut need 45cm, gram 30cm and vegetables about 60cm, this for one culture only. To optimise the land use means to utilize the land for several cultures per year: usually three to four (ex: rice)

- means to utilize the land for several cultures per year: usually three to four (ex: rice, groundnut, gram, green manure). Hence, the irrigation demand would be about 200cm per year.
- The PET value is from Thornthwaite corrected formula. By looking to Penman's equation, more accurate, we obtain a PET value of 2016mm for closed grain crops, which generate a water deficit even more important. To simplify the comparison, the table below is as per Harald Kraft calculation.

	-	As per Daily Rainfall			
Water Balance		Average	Minimum	Maximum	
Potential Evapotranspiration	m	1.88	1.88	1.88	
PRECIPITATION mm	m	1.28	0.73	1.91	
RUNOFF mm	m	0.07	0.00	0.31	
Water Deficit	m	0.67	1.15	0.28	
Irrigation Demand					
Garden Area	M m ³	0.18	0.31	0.08	
Agricultural Areas	M m³	4.91	8.46	2.07	
Total Irrigation Demand	M m ³	5.09	8.77	2.14	

3. WATER BALANCE

NOTE:

	As per Optimized situation			
	For	For	For	
	Average	Minimum	Maximum	
	Rainfall M	Rainfall M	Rainfall M	
Water Demand	m³/a	m³/a	m³/a	
Municipal Consumption	4.92	4.92	4.92	
Irrigation	5.09	8.77	2.14	
Total Water Demand	10.01	13.70	7.07	
Safe Water Vield				
Pooffong	0.00	0.00	0.10	
Curfees	0.03	0.00	0.19	
Surrace	1.55	0.19	5.81	
Sewage	2.90	2.90	2.90	
Total Safe Yield	4.48	3.09	8.90	
Water Balance	-5.53	-10.61	1.83	

3.1 DRINKING WATER SUPPLY

The precipitation distribution in the rainy season is as follows:

		Average	Minimum	Maximum
SW Monsoon	31 %	406 mm	88 mm	1071mm
NE Monsoon	62 %	809 mm	214 mm	1869 mm

AWS-Harvest

	As per Optimized situation			
Safe Water Yield	Average M m³/a	Minimum M m ³ /a	Maximum M m ³ /a	
Municipal Water Demand	4.92	4.92	101 III /a	
Rainwater from the Rooftops	0.03	0.00	4.92	
Rainwater from the Streets	0.82	0.19	1.72	
Rainwater from the Open Areas	0.06	0.00	1.73	
Green Belt Agricultural areas	0.50	0.00	2 33	
Green Belt Wooded areas	0.17	0.00	1.00	
Total Rainwater Runoff	1.58	0.19	6.00	
Water Balance	-3.35	-4.73	1.08	
	-68%	-96%	22%	

The precipitation distribution in the rainy season is as follow:

SW Monsoon NE Monsoon Maximum precipitation of	31 % 61 % 1.654 mm i	Average 385mm 771mm n 4 months	Minimum 158 mm 298mm	Maximum 659 mm 1386 mm
Maximum monthly				

Maximum monthly precipitation of 748 mm

Maximum runoff per month:

From roof top of 549mm, 466 for streets, 255mm on cultivated land and 174mm on forest and other lands

Maximum runoff during NE Monsoon:

From roof top of 919mm, 786mm for streets, 316mm on cultivated land and 174mm on forest and other lands.

	As p	per Opt	imized Sit	uation	
Catchmont Ana		Runoff		Runoff	Runoff
Catchinent Area	Area	Coeff	Ared	max.	max NE-
		00011.		Month	Monsoon
	km ²	%	km ²	M m ³	M m ³
Rooftops	1.10	5%	0.06	0.03	0.08
Streets	1.10	32%	0.36	0.15	0.46
Open Areas	2.70	2%	0.05	0.02	0.40
Agricultural areas	7.36	5%	0.39	0.02	0.00
Wooded areas	7.36	2%	0.13	0.06	0.50
Total	19.63		0.99	0.43	1.28

4. REQUIRED STORAGE VOLUME IN THE GREENBELT

As per Indian Meteorological Department, the Probable Maximum Precipitation for our area is of 60cm in 2 days and 70cm in 3 days.

Anyhow, it odes not make sense to try to catch any imaginable quantity of rainfall. Much more realistic is to try to define suitable size of storage facilities as per available data. According to monthly rainfall data, we get the following information:

AWS-Harvest

page 8/12

During one month, rainfalls above 600mm happen only four times in 35 years. Hence, we

		As per Optimized Situation			
Catchment Area	Area	Runoff Coeff.	Ared	Runoff max. Month	Runoff max NE-Monsoon
Dooffens	km²	%	km²	M m ³	M m ³
Streets	1.10	5%	0.06	0.15	0.15
Oneels	1.10	32%	0.36	0.10	0.15
Open Areas	2.70	6%	0.17	0.04	1.03
Agricultural areas	7.36	5%	0.30	0.50	0.32
Wooded areas	7.36	2%	0.03	1.03	1.03
Total	19.63	270	0.13	0.81	0.88
may cofoly an			1.11	2.93	3.42

may safely consider that 600mm is a suitable maximum figure.

During NE Monsoon, rainfalls above 1300mm happen only three times in 35 years. • Hence, we may safely consider that 1300mm is a suitable maximum figure.

• For a 4 months period, rainfalls above 1350mm happen only three times in 35 years. Hence, we may safely consider that 1350mm is a suitable maximum figure.

By using the Corrected data from daily rainfall minimized at an acceptable level (4 runoffs not included for 35 years), we obtain the following result:

Averag	Average Max Monthly Precipitation NE Monsoon:						
Requir Q _{inf} =	ed Maximum	Capacity for	Infiltration Tre	nches:			
					14,239 m³/d		
Require min Vo	ed Storage Vo	olume in the	Greenbelt:				
max V	$= \Lambda_{red} \times 433$				0.427 M m ³		
max v _G	$_{\rm B}$ = $A_{\rm red} \times 1,3$	00 mm			1 281 M m		
		.Max runoff	Max runoff]			
		per month	NE Monsoon				
		m	m	-			
	Rooftop	0.140	0.140				

0.580

0.110

To collect the entire runoff of Auroville the storage facilities in the Green Belt should be sized between 2.90Mm3 and 3.5Mm3

0.930

0.120

Mastin

collected Streets

Green area

m³/d

M m³ M m³

5. REQUIRED STORAGE VOLUME FOR THE CENTRAL LAKE AROUND THE MATRIMANDIR

Equivalent volume of lake for 40 days retention time

569,545 m3

Inflow Filter velocity Minimum filter size Chosen Alternative **Outlet Filter** Filter velocity Minimum filter size Chosen

max Q_d = 34.400 m³/d $V_F = 0,2 \text{ m/h} = 4,8 \text{ m/d}$ A_F = 34.400 m³/d / 4,8 m/d = 7.167 m² 72 m x 100 m = 7.200 m² Ø 96

10 m/h = 240 m/dA_F = 34.400 m³/d/240 = 143 m² 10 m x 15 m

6. INFILTRATION AND EVAPORATION LOSSES IN THE LAKE

1.8. 6.1 INFILTRATION LOSSES IN THE CENTRAL LAKE

Losses through infiltration with a sealant made of 1.000 mm vacuum-sealed natural clay: QB

= $A_{tot} \times k_f \times H / L = 3.5 \times 10^{-11} \text{ m/s} \times 91.630 \text{ m}^2 \times 5 \text{ m} / 0.1 \text{ m}$

= 0,0002 m³/s = 13,85 m³/d = 5.057 m³/yr. QB

Bottom of Lake

Qs Qs

= 94.173 m² x 3,5 x 10⁻¹¹ m/s x 10 m / 0,1 m = 0,0003 m³/s = 28,47 m³/d = 10.394 m³/a QINF = 15.450 m³/yr.

Evaporation Losses

P	recipitation:	P_{ave}	=	1.300 mm	
Evaporati D	on: eficit:	E _{ave} D	= ,	1.600 mm 300 mm	
S	urface area:		=	181.000 m ²	
E	Evaporation Loss:		= A x D = 181.000 m ² x 0.3		
_		Q_V	=	54.300 m³/yr.	

Total Losses in Lake through Infiltration and Evaporation

AWS-Harvest

page 10/12

$Q_{EI} = 69.750 \text{ m}^3/\text{yr.} \cong 0,07 \text{ M} \text{ m}^3/\text{yr.}$

This corresponds to about 5 % of the storage volume and a sinking of the water level of around 38,5 cm, or about 3,2 cm on the average each month throughout the year.

Estimation of the Losses in Storage in the Greenbelt

Storage \	Volume	٩								
min V_{GB}		=	1,033 M m³							
$\max V_{GB}$	=	3,983	M m³							
Average	Depth	=	5,0 m							
Surface /	Area									
min A _{GB}		=	206.600 m ²							
max A _{GB}		=	796.600 m²	u						
Evapora	tion Losse	S								
max Q _E		=	0,239 M m³							
min Q _E		=	0,062 M m³							
li	nfiltration lo	sses v	when sealing w	with 10 m	m vac	uum.se	ealed i	natur	al c	lay

 $\begin{array}{ll} \min Q_{\text{INF}} = 1,75 \ x \ 10^{-9} \ \text{m/s} \ x \ 206.600 \ \text{m}^2 \ x \ 3.600 \ \text{s} \ x \ 24 \ \text{h} = & 31 \ \text{m}^3/\text{d} = 11.315 \ \text{m}^3/\text{yr}. \\ \max Q_{\text{INF}} = 1,75 \ x \ 10^{-9} \ \text{m/s} \ x \ 796.600 \ \text{m}^2 \ x \ 3.600 \ \text{s} \ x \ 24 \ \text{h} = & 120 \ \text{m}^3/\text{d} = 43.963 \ \text{m}^3/\text{yr}. \\ \text{Total Losses to Storage in the Greenbelt} \\ \min Q_{\text{EI}} = & 0,073 \ \text{M} \ \text{m}^3 \\ \max Q_{\text{EI}} = & 0,283 \ \text{M} \ \text{m}^3 \end{array}$

Total Storage Losses

 $\begin{array}{ll} \min Q_{tEI} = 0,073 + 0,07 &= 0,143 \mbox{ M m}^3/\mbox{yr.} \\ &= 3,7 \ \% \mbox{ of average annual discharge (3,845 \mbox{ M m}^3/\mbox{yr.}) \\ \max Q_{tEI} = 0,283 + 0,07 &= 0,353 \mbox{ M m}^3/\mbox{yr.} \\ &= 9,2 \ \% \mbox{ of average annual discharge (3,845 \mbox{ M m}^3/\mbox{yr.}) \\ \end{array}$

7. FACILITIES FOR THE CONVEYANCE OF SURFACE WATER

1.9. 7.1 ANNUAL OUTPUT

 $Q_{fl} = 2,07 - 5,6 \text{ M m}^3/\text{yr.}$ $Q_{max} = 33.600 \text{ m}^3/\text{d} = 388,9 \text{ l/s}$ The maximum capacity required for the pumps is calculated from the output at maximum water level in the lake and the corresponding vertical rise according to the following equation:

$$P_{P} = \frac{\rho g Q_{P \max} H}{1.000 \eta} (7-1)$$

$$\rho = 1.000 \text{ kg/m}^{3}$$

$$H = 25 \text{ m}$$

$$Q_{pmax} = 400 \text{ l/s} = 1.440 \text{ m}^{3}/\text{h} = 34.560 \text{ m}^{3}/\text{d}$$

$$H = 0.61$$

$$P_{P} = \frac{1 \text{ kg}/1 \cdot 9.81 \text{ m}/\text{s}^{2} \cdot 400 \text{ l/s} \cdot 25 \text{ m}}{1.000 \cdot 0.61} = 160.83$$

According to manufacturer's instructions, an increase of about 20 % above the required pump capicity, P_P , is necessary as a safety measure for the estimation of the minimum required motor capacity, P_M :

 $P_M = 1,2 P_P = 192,99 \text{ kW}$ AWS-Harvest

page 11/12